Displaying similar documents to “Complexity of hypersubstitutions and lattices of varieties”

k-Normalization and (k+1)-level inflation of varieties

Valerie Cheng, Shelly Wismath (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let τ be a type of algebras. A common measurement of the complexity of terms of type τ is the depth of a term. For k ≥ 1, an identity s ≈ t of type τ is said to be k-normal (with respect to this depth complexity measurement) if either s = t or both s and t have depth ≥ k. A variety is called k-normal if all its identities are k-normal. Taking k = 1 with respect to the usual depth valuation of terms gives the well-known property of normality of identities or varieties. For any variety...

2-normalization of lattices

Ivan Chajda, W. Cheng, S. L. Wismath (2008)

Czechoslovak Mathematical Journal

Similarity:

Let τ be a type of algebras. A valuation of terms of type τ is a function v assigning to each term t of type τ a value v ( t ) 0 . For k 1 , an identity s t of type τ is said to be k -normal (with respect to valuation v ) if either s = t or both s and t have value k . Taking k = 1 with respect to the usual depth valuation of terms gives the well-known property of normality of identities. A variety is called k -normal (with respect to the valuation v ) if all its identities are k -normal. For any variety V , there...

[unknown]

Klaus Denecke, Jörg Koppitz, Nittiya Pabhapote (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

A regular hypersubstitution is a mapping which takes every n i -ary operation symbol to an n i -ary term. A variety is called regular-solid if it contains all algebras derived by regular hypersubstitutions. We determine the greatest regular-solid variety of semigroups. This result will be used to give a new proof for the equational description of the greatest solid variety of semigroups. We show that every variety of semigroups which is finitely based by hyperidentities is also finitely based...

Asymptotics of eigensections on toric varieties

A. Huckleberry, H. Sebert (2013)

Annales de l’institut Fourier

Similarity:

Using exhaustion properties of invariant plurisubharmonic functions along with basic combinatorial information on toric varieties, we prove convergence results for sequences of densities | ϕ n | 2 = | s N | 2 / | | s N | | L 2 2 for eigensections s N Γ ( X , L N ) approaching a semiclassical ray. Here X is a normal compact toric variety and L is an ample line bundle equipped with an arbitrary positive bundle metric which is invariant with respect to the compact form of the torus. Our work was motivated by and extends that of Shiffman, Tate...

A semilattice of varieties of completely regular semigroups

Mario Petrich (2020)

Mathematica Bohemica

Similarity:

Completely regular semigroups are unions of their (maximal) subgroups with the unary operation within their maximal subgroups. As such they form a variety whose lattice of subvarieties is denoted by ( 𝒞 ) . We construct a 60-element -subsemilattice and a 38-element sublattice of ( 𝒞 ) . The bulk of the paper consists in establishing the necessary joins for which it uses Polák’s theorem.

A note on normal varieties of monounary algebras

Ivan Chajda, Helmut Länger (2002)

Czechoslovak Mathematical Journal

Similarity:

A variety is called normal if no laws of the form s = t are valid in it where s is a variable and t is not a variable. Let L denote the lattice of all varieties of monounary algebras ( A , f ) and let V be a non-trivial non-normal element of L . Then V is of the form M o d ( f n ( x ) = x ) with some n > 0 . It is shown that the smallest normal variety containing V is contained in H S C ( M o d ( f m n ( x ) = x ) ) for every m > 1 where C denotes the operator of forming choice algebras. Moreover, it is proved that the sublattice of L consisting of all normal...

Lagrangian fibrations on generalized Kummer varieties

Martin G. Gulbrandsen (2007)

Bulletin de la Société Mathématique de France

Similarity:

We investigate the existence of Lagrangian fibrations on the generalized Kummer varieties of Beauville. For a principally polarized abelian surface A of Picard number one we find the following: The Kummer variety K n A is birationally equivalent to another irreducible symplectic variety admitting a Lagrangian fibration, if and only if n is a perfect square. And this is the case if and only if K n A carries a divisor with vanishing Beauville-Bogomolov square.

Bases for certain varieties of completely regular semigroups

Mario Petrich (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Completely regular semigroups equipped with the unary operation of inversion within their maximal subgroups form a variety, denoted by 𝒞ℛ . The lattice of subvarieties of 𝒞ℛ is denoted by ( 𝒞ℛ ) . For each variety in an -subsemilattice Γ of ( 𝒞ℛ ) , we construct at least one basis of identities, and for some important varieties, several. We single out certain remarkable types of bases of general interest. As an application for the local relation L , we construct 𝐋 -classes of all varieties in Γ . Two...

Special m-hyperidentities in biregular leftmost graph varieties of type (2,0)

Apinant Anantpinitwatna, Tiang Poomsa-ard (2009)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Graph algebras establish a connection between directed graphs without multiple edges and special universal algebras of type (2,0). We say that a graph G satisfies a term equation s ≈ t if the corresponding graph algebra A ( G ) ̲ satisfies s ≈ t. A class of graph algebras V is called a graph variety if V = M o d g Σ where Σ is a subset of T(X) × T(X). A graph variety V ' = M o d g Σ ' is called a biregular leftmost graph variety if Σ’ is a set of biregular leftmost term equations. A term equation s ≈ t is called an identity...