The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On graceful colorings of trees”

On path-quasar Ramsey numbers

Binlong Li, Bo Ning (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we...

On γ-labelings of trees

Gary Chartrand, David Erwin, Donald W. VanderJagt, Ping Zhang (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph of order n and size m. A γ-labeling of G is a one-to-one function f:V(G) → 0,1,2,...,m that induces a labeling f’: E(G) → 1,2,...,m of the edges of G defined by f’(e) = |f(u)-f(v)| for each edge e = uv of G. The value of a γ-labeling f is v a l ( f ) = Σ e E ( G ) f ' K ( e ) . The maximum value of a γ-labeling of G is defined as v a l m a x ( G ) = m a x v a l ( f ) : f i s a γ - l a b e l i n g o f G ; while the minimum value of a γ-labeling of G is v a l m i n ( G ) = m i n v a l ( f ) : f i s a γ - l a b e l i n g o f G ; The values v a l m a x ( S p , q ) and v a l m i n ( S p , q ) are determined for double stars S p , q . We present characterizations of connected graphs G of order n for which...

Generalized 3-edge-connectivity of Cartesian product graphs

Yuefang Sun (2015)

Czechoslovak Mathematical Journal

Similarity:

The generalized k -connectivity κ k ( G ) of a graph G was introduced by Chartrand et al. in 1984. As a natural counterpart of this concept, Li et al. in 2011 introduced the concept of generalized k -edge-connectivity which is defined as λ k ( G ) = min { λ ( S ) : S V ( G ) and | S | = k } , where λ ( S ) denotes the maximum number of pairwise edge-disjoint trees T 1 , T 2 , ... , T in G such that S V ( T i ) for 1 i . In this paper we prove that for any two connected graphs G and H we have λ 3 ( G H ) λ 3 ( G ) + λ 3 ( H ) , where G H is the Cartesian product of G and H . Moreover, the bound is sharp. We also...

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...

A new characterization of symmetric group by NSE

Azam Babai, Zeinab Akhlaghi (2017)

Czechoslovak Mathematical Journal

Similarity:

Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.