The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the solvability of systems of linear equations over the ring of integers”

Spaces with property ( D C ( ω 1 ) )

Wei-Feng Xuan, Wei-Xue Shi (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that if X is a first countable space with property ( D C ( ω 1 ) ) and with a G δ -diagonal then the cardinality of X is at most 𝔠 . We also show that if X is a first countable, DCCC, normal space then the extent of X is at most 𝔠 .

On certain non-constructive properties of infinite-dimensional vector spaces

Eleftherios Tachtsis (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In set theory without the axiom of choice ( AC ), we study certain non-constructive properties of infinite-dimensional vector spaces. Among several results, we establish the following: (i) None of the principles AC LO (AC for linearly ordered families of nonempty sets)—and hence AC WO (AC for well-ordered families of nonempty sets)— DC ( < κ ) (where κ is an uncountable regular cardinal), and “for every infinite set X , there is a bijection f : X { 0 , 1 } × X ”, implies the statement “there exists a field F such that...

On preimages of ultrafilters in ZF

Horst Herrlich, Paul Howard, Kyriakos Keremedis (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that given infinite sets X , Y and a function f : X Y which is onto and n -to-one for some n , the preimage of any ultrafilter of Y under f extends to an ultrafilter. We prove that the latter result is, in some sense, the best possible by constructing a permutation model with a set of atoms A and a finite-to-one onto function f : A ω such that for each free ultrafilter of ω its preimage under f does not extend to an ultrafilter. In addition, we show that in there exists an ultrafilter compact...

Locally functionally countable subalgebra of ( L )

M. Elyasi, A. A. Estaji, M. Robat Sarpoushi (2020)

Archivum Mathematicum

Similarity:

Let L c ( X ) = { f C ( X ) : C f ¯ = X } , where C f is the union of all open subsets U X such that | f ( U ) | 0 . In this paper, we present a pointfree topology version of L c ( X ) , named c ( L ) . We observe that c ( L ) enjoys most of the important properties shared by ( L ) and c ( L ) , where c ( L ) is the pointfree version of all continuous functions of C ( X ) with countable image. The interrelation between ( L ) , c ( L ) , and c ( L ) is examined. We show that L c ( X ) c ( 𝔒 ( X ) ) for any space X . Frames L for which c ( L ) = ( L ) are characterized.

On non-normality points, Tychonoff products and Suslin number

Sergei Logunov (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let a space X be Tychonoff product α < τ X α of τ -many Tychonoff nonsingle point spaces X α . Let Suslin number of X be strictly less than the cofinality of τ . Then we show that every point of remainder is a non-normality point of its Čech–Stone compactification β X . In particular, this is true if X is either R τ or ω τ and a cardinal τ is infinite and not countably cofinal.

Functionally countable subalgebras and some properties of the Banaschewski compactification

A. R. Olfati (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a zero-dimensional space and C c ( X ) be the set of all continuous real valued functions on X with countable image. In this article we denote by C c K ( X ) (resp., C c ψ ( X ) ) the set of all functions in C c ( X ) with compact (resp., pseudocompact) support. First, we observe that C c K ( X ) = O c β 0 X X (resp., C c ψ ( X ) = M c β 0 X υ 0 X ), where β 0 X is the Banaschewski compactification of X and υ 0 X is the -compactification of X . This implies that for an -compact space X , the intersection of all free maximal ideals in C c ( X ) is equal to C c K ( X ) , i.e., M c β 0 X X = C c K ( X ) . By applying...