The foam drainage equation with time and space-fractional derivatives solved by the adomian method.
Dahmani, Z., Mesmoudi, M.M., Bebbouchi, R. (2008)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Similarity:
Dahmani, Z., Mesmoudi, M.M., Bebbouchi, R. (2008)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Similarity:
Tadeusz Kaczorek (2016)
International Journal of Applied Mathematics and Computer Science
Similarity:
Fractional descriptor reduced-order nonlinear observers for a class of fractional descriptor continuous-time nonlinear systems are proposed. Sufficient conditions for the existence of the observers are established. The design procedure for the observers is given and demonstrated on a numerical example.
Haci Mehmet Baskonus, Hasan Bulut (2015)
Open Mathematics
Similarity:
In this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L2 nodal norm and L∞ maximum nodal norm to evaluate...
Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)
Applications of Mathematics
Similarity:
We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...
Małgorzata Klimek (2011)
Banach Center Publications
Similarity:
One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.
Li-Li Liu, Jun-Sheng Duan (2015)
Open Mathematics
Similarity:
In this paper, we investigate the solution of the fractional vibration equation, where the damping term is characterized by means of the Caputo fractional derivative with the order α satisfying 0 < α < 1 or 1 < α < 2. Detailed analysis for the fundamental solution y(t) is carried out through the Laplace transform and its complex inversion integral formula. We conclude that y(t) is ultimately positive, and ultimately decreases monotonically and approaches zero for the case...
Benchohra, Mouffak, Hamani, Samira, Ntouyas, Sotiris K. (2008)
Surveys in Mathematics and its Applications
Similarity:
Amina Boucenna, Toufik Moussaoui (2014)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
The aim of this paper is to study the existence of solutions to a boundary value problem associated to a nonlinear fractional differential equation where the nonlinear term depends on a fractional derivative of lower order posed on the half-line. An appropriate compactness criterion and suitable Banach spaces are used and so a fixed point theorem is applied to obtain fixed points which are solutions of our problem.
Branislav Martić (1973)
Publications de l'Institut Mathématique
Similarity:
Yuji Liu, Pinghua Yang (2014)
Applicationes Mathematicae
Similarity:
The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term...
Helena Musielak (1973)
Colloquium Mathematicae
Similarity:
Masayoshi Hata (2005)
Acta Arithmetica
Similarity:
B. Martić (1964)
Matematički Vesnik
Similarity:
Samuel, M., Thomas, Anitha (2010)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 26A33, 33E12, 33C60, 35R11 In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.
Sandeep P. Bhairat, Dnyanoba-Bhaurao Dhaigude (2019)
Mathematica Bohemica
Similarity:
This paper is devoted to studying the existence of solutions of a nonlocal initial value problem involving generalized Katugampola fractional derivative. By using fixed point theorems, the results are obtained in weighted space of continuous functions. Illustrative examples are also given.