Displaying similar documents to “Non-exponential and polynomial stability results of a Bresse system with one infinite memory in the vertical displacement”

Exponential stability of nonlinear non-autonomous multivariable systems

Michael I. Gil' (2015)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

We consider nonlinear non-autonomous multivariable systems governed by differential equations with differentiable linear parts. Explicit conditions for the exponential stability are established. These conditions are formulated in terms of the norms of the derivatives and eigenvalues of the variable matrices, and certain scalar functions characterizing the nonlinearity. Moreover, an estimate for the solutions is derived. It gives us a bound for the region of attraction of the steady...

Exponential stability of distributed parameter systems governed by symmetric hyperbolic partial differential equations using Lyapunov’s second method

Abdoua Tchousso, Thibaut Besson, Cheng-Zhong Xu (2009)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this paper we study asymptotic behaviour of distributed parameter systems governed by partial differential equations (abbreviated to PDE). We first review some recently developed results on the stability analysis of PDE systems by Lyapunov’s second method. On constructing Lyapunov functionals we prove next an asymptotic exponential stability result for a class of symmetric hyperbolic PDE systems. Then we apply the result to establish exponential stability of various chemical engineering...

Exponential stability of a flexible structure with history and thermal effect

Roberto Díaz, Jaime Muñoz, Carlos Martínez, Octavio Vera (2020)

Applications of Mathematics

Similarity:

In this paper we study the asymptotic behavior of a system composed of an integro-partial differential equation that models the longitudinal oscillation of a beam with a memory effect to which a thermal effect has been given by the Green-Naghdi model type III, being physically more accurate than the Fourier and Cattaneo models. To achieve this goal, we will use arguments from spectral theory, considering a suitable hypothesis of smoothness on the integro-partial differential equation. ...

Exponential stability of nonlinear systems with event-triggered schemes and its application

Zhang Li, Gang Yu, Yanjun Shen (2021)

Kybernetika

Similarity:

In this paper, we discuss exponential stability for nonlinear systems with sampled-data-based event-triggered schemes. First, a framework is proposed to analyze exponential stability for nonlinear systems under some different triggering conditions. Based on these results, output feedback exponential stabilization is investigated for a class of inherently nonlinear systems under a kind of event-triggered strategies. Finally, the rationality of the theoretical work is verified by numerical...

Dynamic stabilization of systems via decoupling techniques

Farid Ammar-Khodja, Ahmed Bader, Assia Benabdallah (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We give sufficient conditions which allow the study of the exponential stability of systems closely related to the linear thermoelasticity systems by a decoupling technique. Our approach is based on the multipliers technique and our result generalizes (from the exponential stability point of view) the earlier one obtained by Henry

Some theorems of Phragmen-Lindelof type for nonlinear partial differential equations.

Ramón Quintanilla (1993)

Publicacions Matemàtiques

Similarity:

The present paper studies second order partial differential equations in two independent variables of the form Div(ρ|u,|u,, ρ|u,|u,) = 0. We obtain decay estimates for the solutions in a semi-infinite strip. The results may be seen as theorems of Phragmen-Lindelof type. The method is strongly based on the ideas of Horgan and Payne [5], [6], [8].