Gorenstein property and symmetry for one dimensional local Cohen-Macaulay rings.
K. Kiyek, A. Compillo, F. Delgado (1994)
Manuscripta mathematica
Similarity:
K. Kiyek, A. Compillo, F. Delgado (1994)
Manuscripta mathematica
Similarity:
Judith D. Sally (1980)
Compositio Mathematica
Similarity:
Mark Johnson, Bernd Ulrich (1996)
Compositio Mathematica
Similarity:
Manfred Herrmann, J. Ribbe, Eero Hyry (1993)
Manuscripta mathematica
Similarity:
Samir Bouchiba (2013)
Colloquium Mathematicae
Similarity:
We present an alternative way of measuring the Gorenstein projective (resp., injective) dimension of modules via a new type of complete projective (resp., injective) resolutions. As an application, we easily recover well known theorems such as the Auslander-Bridger formula. Our approach allows us to relate the Gorenstein global dimension of a ring R to the cohomological invariants silp(R) and spli(R) introduced by Gedrich and Gruenberg by proving that leftG-gldim(R) = maxleftsilp(R),...
Alexander MacAulay
Similarity:
Olga Lavila-Vidal, Santiago Zarzuela (1998)
Collectanea Mathematica
Similarity:
W.V. Vasconcelos, S. Morey, S. Noh (1995)
Manuscripta mathematica
Similarity:
Maria Pia Cavaliere, Gianfranco Niesi (1983)
Manuscripta mathematica
Similarity:
M. Herrmann, S. Goto, K. Nishida (1990)
Manuscripta mathematica
Similarity:
Edgar E. Enochs, Jenda M. G. Overtoun (1994)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In this paper, we use a characterization of -modules such that to characterize Cohen-Macaulay rings in terms of various dimensions. This is done by setting to be the local cohomology functor of with respect to the maximal ideal where is the Krull dimension of .