The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The size of the Lerch zeta-function at places symmetric with respect to the line ( s ) = 1 / 2

Dirichlet series induced by the Riemann zeta-function

Jun-ichi Tanaka (2008)

Studia Mathematica

Similarity:

The Riemann zeta-function ζ(s) extends to an outer function in ergodic Hardy spaces on ω , the infinite-dimensional torus indexed by primes p. This enables us to investigate collectively certain properties of Dirichlet series of the form ( a p , s ) = p ( 1 - a p p - s ) - 1 for a p in ω . Among other things, using the Haar measure on ω for measuring the asymptotic behavior of ζ(s) in the critical strip, we shall prove, in a weak sense, the mean-value theorem for ζ(s), equivalent to the Lindelöf hypothesis.

Mean values related to the Dedekind zeta-function

Hengcai Tang, Youjun Wang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let K / be a nonnormal cubic extension which is given by an irreducible polynomial g ( x ) = x 3 + a x 2 + b x + c . Denote by ζ K ( s ) the Dedekind zeta-function of the field K and a K ( n ) the number of integral ideals in K with norm n . In this note, by the higher integral mean values and subconvexity bound of automorphic L -functions, the second and third moment of a K ( n ) is considered, i.e., n x a K 2 ( n ) = x P 1 ( log x ) + O ( x 5 / 7 + ϵ ) , n x a K 3 ( n ) = x P 4 ( log x ) + O ( X 321 / 356 + ϵ ) , where P 1 ( t ) , P 4 ( t ) are polynomials of degree 1, 4, respectively, ϵ > 0 is an arbitrarily small number.

Some infinite sums identities

Meher Jaban, Sinha Sneh Bala (2015)

Czechoslovak Mathematical Journal

Similarity:

We find the sum of series of the form i = 1 f ( i ) i r for some special functions f . The above series is a generalization of the Riemann zeta function. In particular, we take f as some values of Hurwitz zeta functions, harmonic numbers, and combination of both. These generalize some of the results given in Mező’s paper (2013). We use multiple zeta theory to prove all results. The series sums we have obtained are in terms of Bernoulli numbers and powers of π .

Representation growth of linear groups

Michael Larsen, Alexander Lubotzky (2008)

Journal of the European Mathematical Society

Similarity:

Let Γ be a group and r n ( Γ ) the number of its n -dimensional irreducible complex representations. We define and study the associated representation zeta function 𝒵 Γ ( s ) = n = 1 r n ( Γ ) n - s . When Γ is an arithmetic group satisfying the congruence subgroup property then 𝒵 Γ ( s ) has an “Euler factorization”. The “factor at infinity” is sometimes called the “Witten zeta function” counting the rational representations of an algebraic group. For these we determine precisely the abscissa of convergence. The local factor at a finite...

On the spinor zeta functions problem: higher power moments of the Riesz mean

Haiyan Wang (2013)

Acta Arithmetica

Similarity:

Let F be a Siegel cusp form of integral weight k on the Siegel modular group Sp₂(ℤ) of genus 2. The coefficients of the spinor zeta function Z F ( s ) are denoted by cₙ. Let D ρ ( x ; Z F ) be the Riesz mean of cₙ. Kohnen and Wang obtained the truncated Voronoï-type formula for D ρ ( x ; Z F ) under the Ramanujan-Petersson conjecture. In this paper, we study the higher power moments of D ρ ( x ; Z F ) , and then derive an asymptotic formula for the hth (h=3,4,5) power moments of D ( x ; Z F ) by using Ivić’s large value arguments and other techniques. ...

The mean square of the divisor function

Chaohua Jia, Ayyadurai Sankaranarayanan (2014)

Acta Arithmetica

Similarity:

Let d(n) be the divisor function. In 1916, S. Ramanujan stated without proof that n x d ² ( n ) = x P ( l o g x ) + E ( x ) , where P(y) is a cubic polynomial in y and E ( x ) = O ( x 3 / 5 + ε ) , with ε being a sufficiently small positive constant. He also stated that, assuming the Riemann Hypothesis (RH), E ( x ) = O ( x 1 / 2 + ε ) . In 1922, B. M. Wilson proved the above result unconditionally. The direct application of the RH would produce E ( x ) = O ( x 1 / 2 ( l o g x ) l o g l o g x ) . In 2003, K. Ramachandra and A. Sankaranarayanan proved the above result without any assumption. In this paper, we prove E ( x ) = O ( x 1 / 2 ( l o g x ) ) . ...