Displaying similar documents to “On a decomposition of non-negative Radon measures”

Convex Corson compacta and Radon measures

Grzegorz Plebanek (2002)

Fundamenta Mathematicae

Similarity:

Assuming the continuum hypothesis, we show that (i) there is a compact convex subset L of Σ ( ω ) , and a probability Radon measure on L which has no separable support; (ii) there is a Corson compact space K, and a convex weak*-compact set M of Radon probability measures on K which has no G δ -points.

Triebel-Lizorkin spaces with non-doubling measures

Yongsheng Han, Dachun Yang (2004)

Studia Mathematica

Similarity:

Suppose that μ is a Radon measure on d , which may be non-doubling. The only condition assumed on μ is a growth condition, namely, there is a constant C₀ > 0 such that for all x ∈ supp(μ) and r > 0, μ(B(x,r)) ≤ C₀rⁿ, where 0 < n ≤ d. The authors provide a theory of Triebel-Lizorkin spaces p q s ( μ ) for 1 < p < ∞, 1 ≤ q ≤ ∞ and |s| < θ, where θ > 0 is a real number which depends on the non-doubling measure μ, C₀, n and d. The method does not use the vector-valued maximal function...

Simple fractions and linear decomposition of some convolutions of measures

Jolanta K. Misiewicz, Roger Cooke (2001)

Discussiones Mathematicae Probability and Statistics

Similarity:

Every characteristic function φ can be written in the following way: φ(ξ) = 1/(h(ξ) + 1), where h(ξ) = ⎧ 1/φ(ξ) - 1 if φ(ξ) ≠ 0 ⎨ ⎩ ∞ if φ(ξ) = 0 This simple remark implies that every characteristic function can be treated as a simple fraction of the function h(ξ). In the paper, we consider a class C(φ) of all characteristic functions of the form φ a ( ξ ) = [ a / ( h ( ξ ) + a ) ] , where φ(ξ) is a fixed characteristic function. Using the well known theorem on simple fraction decomposition of rational functions we obtain...

Continuous linear functionals on the space of Borel vector measures

Pola Siwek (2008)

Annales Polonici Mathematici

Similarity:

We study properties of the space ℳ of Borel vector measures on a compact metric space X, taking values in a Banach space E. The space ℳ is equipped with the Fortet-Mourier norm | | · | | and the semivariation norm ||·||(X). The integral introduced by K. Baron and A. Lasota plays the most important role in the paper. Investigating its properties one can prove that in most cases the space ( , | | · | | ) * is contained in but not equal to the space (ℳ,||·||(X))*. We obtain a representation of the continuous functionals...

A note on almost strong liftings

C. Ionescu-Tulcea, R. Maher (1971)

Annales de l'institut Fourier

Similarity:

Let X be a locally compact space. A lifting ρ of M R ( X , μ ) where μ is a positive measure on X , is almost strong if for each bounded, continuous function f , ρ ( f ) and f coincide locally almost everywhere. We prove here that the set of all measures μ on X such that there exists an almost strong lifting of M R ( X , | μ | ) is a band.

On Ordinary and Standard Lebesgue Measures on

Gogi Pantsulaia (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

New concepts of Lebesgue measure on are proposed and some of their realizations in the ZFC theory are given. Also, it is shown that Baker’s both measures [1], [2], Mankiewicz and Preiss-Tišer generators [6] and the measure of [4] are not α-standard Lebesgue measures on for α = (1,1,...).

Self-affine measures that are L p -improving

Kathryn E. Hare (2015)

Colloquium Mathematicae

Similarity:

A measure is called L p -improving if it acts by convolution as a bounded operator from L q to L² for some q < 2. Interesting examples include Riesz product measures, Cantor measures and certain measures on curves. We show that equicontractive, self-similar measures are L p -improving if and only if they satisfy a suitable linear independence property. Certain self-affine measures are also seen to be L p -improving.

A convolution property of some measures with self-similar fractal support

Denise Szecsei (2007)

Colloquium Mathematicae

Similarity:

We define a class of measures having the following properties: (1) the measures are supported on self-similar fractal subsets of the unit cube I M = [ 0 , 1 ) M , with 0 and 1 identified as necessary; (2) the measures are singular with respect to normalized Lebesgue measure m on I M ; (3) the measures have the convolution property that μ L p L p + ε for some ε = ε(p) > 0 and all p ∈ (1,∞). We will show that if (1/p,1/q) lies in the triangle with vertices (0,0), (1,1) and (1/2,1/3), then μ L p L q for any measure μ in our...

Estimates of capacity of self-similar measures

Jozef Myjak, Tomasz Szarek (2002)

Annales Polonici Mathematici

Similarity:

We give lower and upper estimates of the capacity of self-similar measures generated by iterated function systems ( S i , p i ) : i = 1 , . . . , N where S i are bi-lipschitzean transformations.

Lineability and spaceability on vector-measure spaces

Giuseppina Barbieri, Francisco J. García-Pacheco, Daniele Puglisi (2013)

Studia Mathematica

Similarity:

It is proved that if X is infinite-dimensional, then there exists an infinite-dimensional space of X-valued measures which have infinite variation on sets of positive Lebesgue measure. In term of spaceability, it is also shown that c a ( , λ , X ) M σ , the measures with non-σ-finite variation, contains a closed subspace. Other considerations concern the space of vector measures whose range is neither closed nor convex. All of those results extend in some sense theorems of Muñoz Fernández et al. [Linear...

A unified Lorenz-type approach to divergence and dependence

Teresa Kowalczyk

Similarity:

AbstractThe paper deals with function-valued and numerical measures of absolute and directed divergence of one probability measure from another. In case of absolute divergence, some new results are added to the known ones to form a unified structure. In case of directed divergence, new concepts are introduced and investigated. It is shown that the notions of absolute and directed divergences complement each other and provide a good insight into the extent and the type of discrepancy...

Semiclassical measures for the Schrödinger equation on the torus

Nalini Anantharaman, Fabricio Macià (2014)

Journal of the European Mathematical Society

Similarity:

In this article, the structure of semiclassical measures for solutions to the linear Schrödinger equation on the torus is analysed. We show that the disintegration of such a measure on every invariant lagrangian torus is absolutely continuous with respect to the Lebesgue measure. We obtain an expression of the Radon-Nikodym derivative in terms of the sequence of initial data and show that it satisfies an explicit propagation law. As a consequence, we also prove an observability inequality,...

On the isotropic constant of marginals

Grigoris Paouris (2012)

Studia Mathematica

Similarity:

We show that if μ₁, ..., μₘ are log-concave subgaussian or supergaussian probability measures in n i , i ≤ m, then for every F in the Grassmannian G N , n , where N = n₁ + ⋯ + nₘ and n< N, the isotropic constant of the marginal of the product of these measures, π F ( μ μ ) , is bounded. This extends known results on bounds of the isotropic constant to a larger class of measures.

IP-Dirichlet measures and IP-rigid dynamical systems: an approach via generalized Riesz products

Sophie Grivaux (2013)

Studia Mathematica

Similarity:

If ( n k ) k 1 is a strictly increasing sequence of integers, a continuous probability measure σ on the unit circle is said to be IP-Dirichlet with respect to ( n k ) k 1 if σ ̂ ( k F n k ) 1 as F runs over all non-empty finite subsets F of ℕ and the minimum of F tends to infinity. IP-Dirichlet measures and their connections with IP-rigid dynamical systems have recently been investigated by Aaronson, Hosseini and Lemańczyk. We simplify and generalize some of their results, using an approach involving generalized Riesz...

Mean values and associated measures of δ -subharmonic functions

Neil A. Watson (2002)

Mathematica Bohemica

Similarity:

Let u be a δ -subharmonic function with associated measure μ , and let v be a superharmonic function with associated measure ν , on an open set E . For any closed ball B ( x , r ) , of centre x and radius r , contained in E , let ( u , x , r ) denote the mean value of u over the surface of the ball. We prove that the upper and lower limits as s , t 0 with 0 < s < t of the quotient ( ( u , x , s ) - ( u , x , t ) ) / ( ( v , x , s ) - ( v , x , t ) ) , lie between the upper and lower limits as r 0 + of the quotient μ ( B ( x , r ) ) / ν ( B ( x , r ) ) . This enables us to use some well-known measure-theoretic results to prove new variants...

Integral representation and relaxation for functionals defined on measures

Ennio De Giorgi, Luigi Ambrosio, Giuseppe Buttazzo (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Given a separable metric locally compact space Ω , and a positive finite non-atomic measure λ on Ω , we study the integral representation on the space of measures with bounded variation Ω of the lower semicontinuous envelope of the functional F ( u ) = Ω f ( x , u ) 𝑑 λ    u L 1 ( Ω , λ , n ) with respect to the weak convergence of measures.

When is a Riesz distribution a complex measure?

Alan D. Sokal (2011)

Bulletin de la Société Mathématique de France

Similarity:

Let α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α . I give an elementary proof of the necessary and sufficient condition for α to be a locally finite complex measure (= complex Radon measure).

Integral representation and relaxation for Junctionals defined on measures

Ennio De Giorgi, Luigi Ambrosio, Giuseppe Buttazzo (1987)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Given a separable metric locally compact space Ω , and a positive finite non-atomic measure λ on Ω , we study the integral representation on the space of measures with bounded variation Ω of the lower semicontinuous envelope of the functional F ( u ) = Ω f ( x , y ) d λ    u L 1 ( Ω , λ , n ) with respect to the weak convergence of measures.

The multifractal box dimensions of typical measures

Frédéric Bayart (2012)

Fundamenta Mathematicae

Similarity:

We compute the typical (in the sense of Baire’s category theorem) multifractal box dimensions of measures on a compact subset of d . Our results are new even in the context of box dimensions of measures.

Limit theorems for random fields

Nguyen van Thu

Similarity:

CONTENTSIntroduction............................................................................................................................................................................ 51. Notation and preliminaries............................................................................................................................................ 52. Statement of the problem..................................................................................................................................................

Maximal function and Carleson measures in the theory of Békollé-Bonami weights

Carnot D. Kenfack, Benoît F. Sehba (2016)

Colloquium Mathematicae

Similarity:

Let ω be a Békollé-Bonami weight. We give a complete characterization of the positive measures μ such that | M ω f ( z ) | q d μ ( z ) C ( | f ( z ) | p ω ( z ) d V ( z ) ) q / p and μ ( z : M f ( z ) > λ ) C / ( λ q ) ( | f ( z ) | p ω ( z ) d V ( z ) ) q / p , where M ω is the weighted Hardy-Littlewood maximal function on the upper half-plane and 1 ≤ p,q <; ∞.