The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “More remarks on the intersection ideal 𝒩

A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case

Fateme Kouchakinejad, Alexandra Šipošová (2017)

Kybernetika

Similarity:

For an aggregation function A we know that it is bounded by A * and A * which are its super-additive and sub-additive transformations, respectively. Also, it is known that if A * is directionally convex, then A = A * and A * is linear; similarly, if A * is directionally concave, then A = A * and A * is linear. We generalize these results replacing the directional convexity and concavity conditions by the weaker assumptions of overrunning a super-additive function and underrunning a sub-additive function, respectively. ...

A note on the multiplier ideals of monomial ideals

Cheng Gong, Zhongming Tang (2015)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔞 [ x 1 , ... , x n ] be a monomial ideal and 𝒥 ( 𝔞 c ) the multiplier ideal of 𝔞 with coefficient c . Then 𝒥 ( 𝔞 c ) is also a monomial ideal of [ x 1 , ... , x n ] , and the equality 𝒥 ( 𝔞 c ) = 𝔞 implies that 0 < c < n + 1 . We mainly discuss the problem when 𝒥 ( 𝔞 ) = 𝔞 or 𝒥 ( 𝔞 n + 1 - ε ) = 𝔞 for all 0 < ε < 1 . It is proved that if 𝒥 ( 𝔞 ) = 𝔞 then 𝔞 is principal, and if 𝒥 ( 𝔞 n + 1 - ε ) = 𝔞 holds for all 0 < ε < 1 then 𝔞 = ( x 1 , ... , x n ) . One global result is also obtained. Let 𝔞 ˜ be the ideal sheaf on n - 1 associated with 𝔞 . Then it is proved that the equality 𝒥 ( 𝔞 ˜ ) = 𝔞 ˜ implies that 𝔞 ˜ is principal.

On Meager Additive and Null Additive Sets in the Cantor Space 2 ω and in ℝ

Tomasz Weiss (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let T be the standard Cantor-Lebesgue function that maps the Cantor space 2 ω onto the unit interval ⟨0,1⟩. We prove within ZFC that for every X 2 ω , X is meager additive in 2 ω iff T(X) is meager additive in ⟨0,1⟩. As a consequence, we deduce that the cartesian product of meager additive sets in ℝ remains meager additive in ℝ × ℝ. In this note, we also study the relationship between null additive sets in 2 ω and ℝ.

Semi n -ideals of commutative rings

Ece Yetkin Çelikel, Hani A. Khashan (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with identity. A proper ideal I is said to be an n -ideal of R if for a , b R , a b I and a 0 imply b I . We give a new generalization of the concept of n -ideals by defining a proper ideal I of R to be a semi n -ideal if whenever a R is such that a 2 I , then a 0 or a I . We give some examples of semi n -ideal and investigate semi n -ideals under various contexts of constructions such as direct products, homomorphic images and localizations. We present various characterizations of this new...

Order-theoretic properties of some sets of quasi-measures

Zbigniew Lipecki (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let 𝔐 and be algebras of subsets of a set Ω with 𝔐 , and denote by E ( μ ) the set of all quasi-measure extensions of a given quasi-measure μ on 𝔐 to . We show that E ( μ ) is order bounded if and only if it is contained in a principal ideal in b a ( ) if and only if it is weakly compact and extr E ( μ ) is contained in a principal ideal in b a ( ) . We also establish some criteria for the coincidence of the ideals, in b a ( ) , generated by E ( μ ) and extr E ( μ ) .

Ideals in big Lipschitz algebras of analytic functions

Thomas Vils Pedersen (2004)

Studia Mathematica

Similarity:

For 0 < γ ≤ 1, let Λ γ be the big Lipschitz algebra of functions analytic on the open unit disc which satisfy a Lipschitz condition of order γ on ̅. For a closed set E on the unit circle and an inner function Q, let J γ ( E , Q ) be the closed ideal in Λ γ consisting of those functions f Λ γ for which (i) f = 0 on E, (ii) | f ( z ) - f ( w ) | = o ( | z - w | γ ) as d(z,E),d(w,E) → 0, (iii) f / Q Λ γ . Also, for a closed ideal I in Λ γ , let E I = z ∈ : f(z) = 0 for every f ∈ I and let Q I be the greatest common divisor of the inner parts of non-zero functions...

The strong persistence property and symbolic strong persistence property

Mehrdad Nasernejad, Kazem Khashyarmanesh, Leslie G. Roberts, Jonathan Toledo (2022)

Czechoslovak Mathematical Journal

Similarity:

Let I be an ideal in a commutative Noetherian ring R . Then the ideal I has the strong persistence property if and only if ( I k + 1 : R I ) = I k for all k , and I has the symbolic strong persistence property if and only if ( I ( k + 1 ) : R I ( 1 ) ) = I ( k ) for all k , where I ( k ) denotes the k th symbolic power of I . We study the strong persistence property for some classes of monomial ideals. In particular, we present a family of primary monomial ideals failing the strong persistence property. Finally, we show that every square-free monomial...

Some generalizations of Olivier's theorem

Alain Faisant, Georges Grekos, Ladislav Mišík (2016)

Mathematica Bohemica

Similarity:

Let n = 1 a n be a convergent series of positive real numbers. L. Olivier proved that if the sequence ( a n ) is non-increasing, then lim n n a n = 0 . In the present paper: (a) We formulate and prove a necessary and sufficient condition for having lim n n a n = 0 ; Olivier’s theorem is a consequence of our Theorem . (b) We prove properties analogous to Olivier’s property when the usual convergence is replaced by the -convergence, that is a convergence according to an ideal of subsets of . Again, Olivier’s theorem is a consequence...

Duality of measures of non-𝒜-compactness

Juan Manuel Delgado, Cándido Piñeiro (2015)

Studia Mathematica

Similarity:

Let be a Banach operator ideal. Based on the notion of -compactness in a Banach space due to Carl and Stephani, we deal with the notion of measure of non–compactness of an operator. We consider a map χ (respectively, n ) acting on the operators of the surjective (respectively, injective) hull of such that χ ( T ) = 0 (respectively, n ( T ) = 0 ) if and only if the operator T is -compact (respectively, injectively -compact). Under certain conditions on the ideal , we prove an equivalence inequality involving...

On the regularity and defect sequence of monomial and binomial ideals

Keivan Borna, Abolfazl Mohajer (2019)

Czechoslovak Mathematical Journal

Similarity:

When S is a polynomial ring or more generally a standard graded algebra over a field K , with homogeneous maximal ideal 𝔪 , it is known that for an ideal I of S , the regularity of powers of I becomes eventually a linear function, i.e., reg ( I m ) = d m + e for m 0 and some integers d , e . This motivates writing reg ( I m ) = d m + e m for every m 0 . The sequence e m , called the of the ideal I , is the subject of much research and its nature is still widely unexplored. We know that e m is eventually constant. In this article, after proving...

When spectra of lattices of z -ideals are Stone-Čech compactifications

Themba Dube (2017)

Mathematica Bohemica

Similarity:

Let X be a completely regular Hausdorff space and, as usual, let C ( X ) denote the ring of real-valued continuous functions on X . The lattice of z -ideals of C ( X ) has been shown by Martínez and Zenk (2005) to be a frame. We show that the spectrum of this lattice is (homeomorphic to) β X precisely when X is a P -space. This we actually show to be true not only in spaces, but in locales as well. Recall that an ideal of a commutative ring is called a d -ideal if whenever two elements have the same annihilator...

On strong measure zero subsets of κ 2

Aapo Halko, Saharon Shelah (2001)

Fundamenta Mathematicae

Similarity:

We study the generalized Cantor space κ 2 and the generalized Baire space κ κ as analogues of the classical Cantor and Baire spaces. We equip κ κ with the topology where a basic neighborhood of a point η is the set ν: (∀j < i)(ν(j) = η(j)), where i < κ. We define the concept of a strong measure zero set of κ 2 . We prove for successor κ = κ < κ that the ideal of strong measure zero sets of κ 2 is κ -additive, where κ is the size of the smallest unbounded family in κ κ , and that the generalized Borel...

Ultrafilter extensions of asymptotic density

Jan Grebík (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We characterize for which ultrafilters on ω is the ultrafilter extension of the asymptotic density on natural numbers σ -additive on the quotient boolean algebra 𝒫 ( ω ) / d 𝒰 or satisfies similar additive condition on 𝒫 ( ω ) / fin . These notions were defined in [Blass A., Frankiewicz R., Plebanek G., Ryll-Nardzewski C., A Note on extensions of asymptotic density, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3313–3320] under the name A P (null) and A P (*). We also present a characterization of a P - and semiselective...