Displaying similar documents to “On the geometrical properties of Heisenberg groups”

On the geometry of some solvable extensions of the Heisenberg group

Mehri Nasehi, Mansour Aghasi (2018)

Czechoslovak Mathematical Journal

Similarity:

In this paper we first classify left-invariant generalized Ricci solitons on some solvable extensions of the Heisenberg group in both Riemannian and Lorentzian cases. Then we obtain the exact form of all left-invariant unit time-like vector fields which are spatially harmonic. We also calculate the energy of an arbitrary left-invariant vector field X on these spaces and obtain all vector fields which are critical points for the energy functional restricted to vector fields of the same...

A Weitzenbôck formula for the second fundamental form of a Riemannian foliation

Paolo Piccinni (1984)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

Si considera la seconda forma fondamentale α di foliazioni su varietà riemanniane e si ottiene una formula per il laplaciano 2 α - Se ne deducono alcune implicazioni per foliazioni su varietà a curvatura costante.

φ ( Ric ) -vector fields in Riemannian spaces

Irena Hinterleitner, Volodymyr A. Kiosak (2008)

Archivum Mathematicum

Similarity:

In this paper we study vector fields in Riemannian spaces, which satisfy ϕ = μ , 𝐑𝐢𝐜 , μ = const. We investigate the properties of these fields and the conditions of their coexistence with concircular vector fields. It is shown that in Riemannian spaces, noncollinear concircular and ϕ ( Ric ) -vector fields cannot exist simultaneously. It was found that Riemannian spaces with ϕ ( Ric ) -vector fields of constant length have constant scalar curvature. The conditions for the existence of ϕ ( Ric ) -vector fields in symmetric spaces...

Classification of 4 -dimensional homogeneous weakly Einstein manifolds

Teresa Arias-Marco, Oldřich Kowalski (2015)

Czechoslovak Mathematical Journal

Similarity:

Y. Euh, J. Park and K. Sekigawa were the first authors who defined the concept of a weakly Einstein Riemannian manifold as a modification of that of an Einstein Riemannian manifold. The defining formula is expressed in terms of the Riemannian scalar invariants of degree two. This concept was inspired by that of a super-Einstein manifold introduced earlier by A. Gray and T. J. Willmore in the context of mean-value theorems in Riemannian geometry. The dimension 4 is the most interesting...

Metrics with homogeneous geodesics on flag manifolds

Dimitri V. Alekseevsky, Andreas Arvanitoyeorgos (2002)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A geodesic of a homogeneous Riemannian manifold ( M = G / K , g ) is called homogeneous if it is an orbit of an one-parameter subgroup of G . In the case when M = G / H is a naturally reductive space, that is the G -invariant metric g is defined by some non degenerate biinvariant symmetric bilinear form B , all geodesics of M are homogeneous. We consider the case when M = G / K is a flag manifold, i.eȧn adjoint orbit of a compact semisimple Lie group G , and we give a simple necessary condition that M admits a non-naturally...