Displaying similar documents to “Event-triggered output consensus for linear multi-agent systems via adaptive distributed observer”

Quantized distributed output regulation of multi-agent systems

Xiaoli Wang, Yumin Chen (2016)

Kybernetika

Similarity:

Motivated by digital communication channel, we consider the distributed output regulation problem for linear multi-agent systems with quantized state measurements. Quantizers take finitely many values and have an adjustable "zoom" parameter. Quantized distributed output regulation concerns designing distributed feedback by employing quantized technique for multi-agent systems such that all agents can track an active leader, and/or distributed disturbance rejection. With the solvability...

Robust aperiodic-disturbance rejection in an uncertain modified repetitive-control system

Lan Zhou, Jinhua She, Chaoyi Li, Changzhong Pan (2016)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper concerns the problem of designing an EID-based robust output-feedback modified repetitive-control system (ROFMRCS) that provides satisfactory aperiodic-disturbance rejection performance for a class of plants with time-varying structured uncertainties. An equivalent-input-disturbance (EID) estimator is added to the ROFMRCS that estimates the influences of all types of disturbances and compensates them. A continuous-discrete two-dimensional model is built to describe the EID-based...

Event-triggered observer-based tracking control for leader-follower multi-agent systems

Pengxiao Zhang, Jinhuan Wang (2016)

Kybernetika

Similarity:

This paper considers the consensus tracking problem for a class of leader-follower multi-agent systems via event-triggered observer-based control. In our set-up, only a subset of the followers can obtain some relative information on the leader. Assume that the leader's control input is unknown for the followers. In order to track such a leader, we design two novel event-triggered observer-based control strategies, one centralized and the other distributed. One can prove that under the...

Dynamic external force feedback loop control of a robot manipulator using a neural compensator - Application to the trajectory following in an unknown environment

Farid Ferguene, Redouane Toumi (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

Force/position control strategies provide an effective framework to deal with tasks involving interaction with the environment. One of these strategies proposed in the literature is external force feedback loop control. It fully employs the available sensor measurements by operating the control action in a full dimensional space without using selection matrices. The performance of this control strategy is affected by uncertainties in both the robot dynamic model and environment stiffness....

Decentralized design of interconnected H feedback control systems with quantized signals

Guisheng Zhai, Ning Chen, Weihua Gui (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, we consider the design of interconnected H feedback control systems with quantized signals. We assume that a decentralized dynamic output feedback has been designed for an interconnected continuous-time LTI system so that the closed-loop system is stable and a desired H disturbance attenuation level is achieved, and that the subsystem measurement outputs are quantized before they are passed to the local controllers. We propose a local-output-dependent strategy for updating...

Finite-time tracking control of multiple nonholonomic mobile robots with external disturbances

Meiying Ou, Shengwei Gu, Xianbing Wang, Kexiu Dong (2015)

Kybernetika

Similarity:

This paper investigates finite-time tracking control problem of multiple nonholonomic mobile robots in dynamic model with external disturbances, where a kind of finite-time disturbance observer (FTDO) is introduced to estimate the external disturbances for each mobile robot. First of all, the resulting tracking error dynamic is transformed into two subsystems, i. e., a third-order subsystem and a second-order subsystem for each mobile robot. Then, the two subsystem are discussed respectively,...

An example of the knowledge based controller-design and evaluation.

Oto Tezak (1999)

Mathware and Soft Computing

Similarity:

Knowledge based controller for a balance control model is presented in this paper. The design of the controller was based on the human control of the same process. Developed controller is tested by means of simulation and operation on the laboratory balance control model. The simulation results of the controller as well as a statistical description of the experiments with developed controller and human control is presented in the paper. Verification is based on experiments with an intelligent...