Displaying similar documents to “A note on the volume of -Einstein manifolds with skew-torsion”

The Srní lectures on non-integrable geometries with torsion

Ilka Agricola (2006)

Archivum Mathematicum

Similarity:

This review article intends to introduce the reader to non-integrable geometric structures on Riemannian manifolds and invariant metric connections with torsion, and to discuss recent aspects of mathematical physics—in particular superstring theory—where these naturally appear. Connections with skew-symmetric torsion are exhibited as one of the main tools to understand non-integrable geometries. To this aim a a series of key examples is presented and successively dealt with using the...

Distinguished connections on ( J 2 = ± 1 ) -metric manifolds

Fernando Etayo, Rafael Santamaría (2016)

Archivum Mathematicum

Similarity:

We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of ( J 2 = ± 1 ) -metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter...

On Uniqueness Theoremsfor Ricci Tensor

Marina B. Khripunova, Sergey E. Stepanov, Irina I. Tsyganok, Josef Mikeš (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In Riemannian geometry the prescribed Ricci curvature problem is as follows: given a smooth manifold M and a symmetric 2-tensor r , construct a metric on M whose Ricci tensor equals r . In particular, DeTurck and Koiso proved the following celebrated result: the Ricci curvature uniquely determines the Levi-Civita connection on any compact Einstein manifold with non-negative section curvature. In the present paper we generalize the result of DeTurck and Koiso for a Riemannian manifold with...

Curvature and torsion formulas for conflict sets

Martijn van Manen (2003)

Banach Center Publications

Similarity:

Conflict set are the points at equal distance from a number of manifolds. Known results on the differential geometry of these sets are generalized and extended.

Partial integrability on Thurston manifolds

Hyeseon Kim (2013)

Annales Polonici Mathematici

Similarity:

We determine the maximal number of independent holomorphic functions on the Thurston manifolds M 2 r + 2 , r ≥ 1, which are the first discovered compact non-Kähler almost Kähler manifolds. We follow the method which involves analyzing the torsion tensor dθ modθ, where θ = ( θ ¹ , . . . , θ r + 1 ) are independent (1,0)-forms.

How many are equiaffine connections with torsion

Zdeněk Dušek, Oldřich Kowalski (2015)

Archivum Mathematicum

Similarity:

The question how many real analytic equiaffine connections with arbitrary torsion exist locally on a smooth manifold M of dimension n is studied. The families of general equiaffine connections and with skew-symmetric Ricci tensor, or with symmetric Ricci tensor, respectively, are described in terms of the number of arbitrary functions of n variables.

A classification of the torsion tensors on almost contact manifolds with B-metric

Mancho Manev, Miroslava Ivanova (2014)

Open Mathematics

Similarity:

The space of the torsion (0,3)-tensors of the linear connections on almost contact manifolds with B-metric is decomposed in 15 orthogonal and invariant subspaces with respect to the action of the structure group. Three known connections, preserving the structure, are characterized regarding this classification.