Displaying similar documents to “Safe consensus control of cooperative-competitive multi-agent systems via differential privacy”

Distributed accelerated Nash equilibrium learning for two-subnetwork zero-sum game with bilinear coupling

Xianlin Zeng, Lihua Dou, Jinqiang Cui (2023)

Kybernetika

Similarity:

This paper proposes a distributed accelerated first-order continuous-time algorithm for O ( 1 / t 2 ) convergence to Nash equilibria in a class of two-subnetwork zero-sum games with bilinear couplings. First-order methods, which only use subgradients of functions, are frequently used in distributed/parallel algorithms for solving large-scale and big-data problems due to their simple structures. However, in the worst cases, first-order methods for two-subnetwork zero-sum games often have an asymptotic...

On the weighted Euclidean matching problem in d

Birgit Anthes, Ludger Rüschendorf (2001)

Applicationes Mathematicae

Similarity:

A partitioning algorithm for the Euclidean matching problem in d is introduced and analyzed in a probabilistic model. The algorithm uses elements from the fixed dissection algorithm of Karp and Steele (1985) and the Zig-Zag algorithm of Halton and Terada (1982) for the traveling salesman problem. The algorithm runs in expected time n ( l o g n ) p - 1 and approximates the optimal matching in the probabilistic sense.

Constrained 𝐤 -means algorithm for resource allocation in mobile cloudlets

Rasim M. Alguliyev, Ramiz M. Aliguliyev, Rashid G. Alakbarov (2023)

Kybernetika

Similarity:

With the rapid increase in the number of mobile devices connected to the Internet in recent years, the network load is increasing. As a result, there are significant delays in the delivery of cloud resources to mobile users. Edge computing technologies (edge, cloudlet, fog computing, etc.) have been widely used in recent years to eliminate network delays. This problem can be solved by allocating cloud resources to the cloudlets that are close to users. The article proposes a clustering-based...

A stochastic mirror-descent algorithm for solving A X B = C over an multi-agent system

Yinghui Wang, Songsong Cheng (2021)

Kybernetika

Similarity:

In this paper, we consider a distributed stochastic computation of A X B = C with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of A X B = C , we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm....

A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space

L.O. Jolaoso, H.A. Abass, O.T. Mewomo (2019)

Archivum Mathematicum

Similarity:

In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of δ -demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition n = 1 β n x n - 1 - x n < + on the inertial term. Finally,...

A New overlapping community detection algorithm based on similarity of neighbors in complex networks

Pelin Çetin, Sahin Emrah Amrahov (2022)

Kybernetika

Similarity:

Community detection algorithms help us improve the management of complex networks and provide a clean sight of them. We can encounter complex networks in various fields such as social media, bioinformatics, recommendation systems, and search engines. As the definition of the community changes based on the problem considered, there is no algorithm that works universally for all kinds of data and network structures. Communities can be disjointed such that each member is in at most one...

The adaptation of the k -means algorithm to solving the multiple ellipses detection problem by using an initial approximation obtained by the DIRECT global optimization algorithm

Rudolf Scitovski, Kristian Sabo (2019)

Applications of Mathematics

Similarity:

We consider the multiple ellipses detection problem on the basis of a data points set coming from a number of ellipses in the plane not known in advance, whereby an ellipse E is viewed as a Mahalanobis circle with center S , radius r , and some positive definite matrix Σ . A very efficient method for solving this problem is proposed. The method uses a modification of the k -means algorithm for Mahalanobis-circle centers. The initial approximation consists of the set of circles whose centers...

An interior-point algorithm for semidefinite least-squares problems

Chafia Daili, Mohamed Achache (2022)

Applications of Mathematics

Similarity:

We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only full Nesterov-Todd steps with the advantage that no line search is required. Under new appropriate choices of the parameter β which defines the size of the neighborhood of the central-path and of the parameter θ which determines the rate of decrease of the barrier parameter, we show that the proposed algorithm is well defined...

An improvement of Euclid's algorithm

Zítko, Jan, Kuřátko, Jan

Similarity:

The paper introduces the calculation of a greatest common divisor of two univariate polynomials. Euclid’s algorithm can be easily simulated by the reduction of the Sylvester matrix to an upper triangular form. This is performed by using c - s transformation and Q R -factorization methods. Both procedures are described and numerically compared. Computations are performed in the floating point environment.

Computation of linear algebraic equations with solvability verification over multi-agent networks

Xianlin Zeng, Kai Cao (2017)

Kybernetika

Similarity:

In this paper, we consider the problem of solving a linear algebraic equation A x = b in a distributed way by a multi-agent system with a solvability verification requirement. In the problem formulation, each agent knows a few columns of A , different from the previous results with assuming that each agent knows a few rows of A and b . Then, a distributed continuous-time algorithm is proposed for solving the linear algebraic equation from a distributed constrained optimization viewpoint. The...

Implicitization of Parametric Hypersurfaces via Points

Ferruccio Orecchia, Isabella Ramella (2018)

Rendiconto dell’Accademia delle Scienze Fisiche e Matematiche

Similarity:

Given a parametric polynomial representation of an algebraic hypersurface 𝐒 in the projective space we give a new algorithm for finding the implicit cartesian equation of 𝐒 .The algorithm is based on finding a suitable finite number of points on 𝐒 and computing, by linear algebra, the equation of the hypersurface of least degree that passes through the points. In particular the algorithm works for plane curves and surfaces in the ordinary three-dimensional space. Using C++ the algorithm...