The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Additive generators of discrete semi-uninorms”

Property of being semi-Kelley for the cartesian products and hyperspaces

Enrique Castañeda-Alvarado, Ivon Vidal-Escobar (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In this paper we construct a Kelley continuum X such that X × [ 0 , 1 ] is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69–99. In addition, we show that the hyperspace C ( X ) is not semi- Kelley. Further we show that small Whitney levels in C ( X ) are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro,...

On homotopy types of limits of semi-algebraic sets and additive complexity of polynomials

Sal Barone, Saugata Basu (2014)

Journal of the European Mathematical Society

Similarity:

We prove that the number of distinct homotopy types of limits of one-parameter semi-algebraic families of closed and bounded semi-algebraic sets is bounded singly exponentially in the additive complexity of any quantifier-free first order formula defining the family. As an important consequence, we derive that the number of distinct homotopy types of semi-algebraic subsets of k defined by a quantifier-free first order formula Φ , where the sum of the additive complexities of the polynomials...

Mal'tsev--Neumann products of semi-simple classes of rings

Barry James Gardner (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Malt’tsev–Neumann products of semi-simple classes of associative rings are studied and some conditions which ensure that such a product is again a semi-simple class are obtained. It is shown that both products, 𝒮 1 𝒮 2 and 𝒮 2 𝒮 1 of semi-simple classes 𝒮 1 and 𝒮 2 are semi-simple classes if and only if they are equal.

Some results on semi-total signed graphs

Deepa Sinha, Pravin Garg (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A signed graph (or sigraph in short) is an ordered pair S = ( S u , σ ) , where S u is a graph G = (V,E), called the underlying graph of S and σ:E → +, - is a function from the edge set E of S u into the set +,-, called the signature of S. The ×-line sigraph of S denoted by L × ( S ) is a sigraph defined on the line graph L ( S u ) of the graph S u by assigning to each edge ef of L ( S u ) , the product of signs of the adjacent edges e and f in S. In this paper, first we define semi-total line sigraph and semi-total point sigraph...

Attractor of a semi-discrete Benjamin-Bona-Mahony equation on ℝ¹

Chaosheng Zhu (2015)

Annales Polonici Mathematici

Similarity:

This paper is concerned with the study of the large time behavior and especially the regularity of the global attractor for the semi-discrete in time Crank-Nicolson scheme to discretize the Benjamin-Bona-Mahony equation on ℝ¹. Firstly, we prove that this semi-discrete equation provides a discrete infinite-dimensional dynamical system in H¹(ℝ¹). Then we prove that this system possesses a global attractor τ in H¹(ℝ¹). In addition, we show that the global attractor τ is regular, i.e., τ ...

On ( n , m ) - A -normal and ( n , m ) - A -quasinormal semi-Hilbertian space operators

Samir Al Mohammady, Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud (2022)

Mathematica Bohemica

Similarity:

The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let be a Hilbert space and let A be a positive bounded operator on . The semi-inner product h k A : = A h k , h , k , induces a semi-norm · A . This makes into a semi-Hilbertian space. An operator T A ( ) is said to be ( n , m ) - A -normal if [ T n , ( T A ) m ] : = T n ( T A ) m - ( T A ) m T n = 0 for some positive integers n and m .

Some results on semi-stratifiable spaces

Wei-Feng Xuan, Yan-Kui Song (2019)

Mathematica Bohemica

Similarity:

We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: (1) If X is a semi-stratifiable space, then X is separable if and only if X is D C ( ω 1 ) ; (2) If X is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then X is separable; (3) Let X be a ω -monolithic star countable extent semi-stratifiable space. If t ( X ) = ω and d ( X ) ω 1 , then X is hereditarily separable. Finally, we prove that for...

On Meager Additive and Null Additive Sets in the Cantor Space 2 ω and in ℝ

Tomasz Weiss (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let T be the standard Cantor-Lebesgue function that maps the Cantor space 2 ω onto the unit interval ⟨0,1⟩. We prove within ZFC that for every X 2 ω , X is meager additive in 2 ω iff T(X) is meager additive in ⟨0,1⟩. As a consequence, we deduce that the cartesian product of meager additive sets in ℝ remains meager additive in ℝ × ℝ. In this note, we also study the relationship between null additive sets in 2 ω and ℝ.