Displaying similar documents to “The third boundary value problem in potential theory for domains with a piecewise smooth boundary”

Solution of the Robin problem for the Laplace equation

Dagmar Medková (1998)

Applications of Mathematics

Similarity:

For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.

The boundary-value problems for Laplace equation and domains with nonsmooth boundary

Dagmar Medková (1998)

Archivum Mathematicum

Similarity:

Dirichlet, Neumann and Robin problem for the Laplace equation is investigated on the open set with holes and nonsmooth boundary. The solutions are looked for in the form of a double layer potential and a single layer potential. The measure, the potential of which is a solution of the boundary-value problem, is constructed.

Solution of the Neumann problem for the Laplace equation

Dagmar Medková (1998)

Czechoslovak Mathematical Journal

Similarity:

For fairly general open sets it is shown that we can express a solution of the Neumann problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series. If the open set is simply connected and bounded then the solution of the Dirichlet problem is the double layer potential with a density given by a similar series.