Solution of the Robin problem for the Laplace equation

Dagmar Medková

Applications of Mathematics (1998)

  • Volume: 43, Issue: 2, page 133-155
  • ISSN: 0862-7940

Abstract

top
For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.

How to cite

top

Medková, Dagmar. "Solution of the Robin problem for the Laplace equation." Applications of Mathematics 43.2 (1998): 133-155. <http://eudml.org/doc/33003>.

@article{Medková1998,
abstract = {For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.},
author = {Medková, Dagmar},
journal = {Applications of Mathematics},
keywords = {Laplace equation; Robin problem; single layer potential; Laplace equation; Robin problem; single layer potential},
language = {eng},
number = {2},
pages = {133-155},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solution of the Robin problem for the Laplace equation},
url = {http://eudml.org/doc/33003},
volume = {43},
year = {1998},
}

TY - JOUR
AU - Medková, Dagmar
TI - Solution of the Robin problem for the Laplace equation
JO - Applications of Mathematics
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 2
SP - 133
EP - 155
AB - For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.
LA - eng
KW - Laplace equation; Robin problem; single layer potential; Laplace equation; Robin problem; single layer potential
UR - http://eudml.org/doc/33003
ER -

References

top
  1. 10.1016/0022-247X(78)90268-8, J. Math. Anal. Appl. 66 (1978), 37–54. (1978) MR0513484DOI10.1016/0022-247X(78)90268-8
  2. Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
  3. Éléments de la théorie classique du potentiel, Centre de documentation universitaire. Paris, 1961. (1961) MR0106366
  4. Potential theory and function theory for irregular regions. Seminars in mathematics V. A. Steklov Mathematical Institute, Leningrad, 1969. (Russian) (1969) MR0240284
  5. Tricomi potentials. Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences.Praha, 1988. (Slovak) (1988) 
  6. Geometric Measure Theory, Springer-Verlag, 1969. (1969) Zbl0176.00801MR0257325
  7. Some remarks on topologically equivalent norms, Izvestija Mold. Fil. Akad. Nauk SSSR 10 (76) (1960), 91–95. (Russian) (1960) 
  8. On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ. 19(4) (1986), 60–64. (Russian) (1986) MR0880678
  9. Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-06, Linköping Univ.,Sweden. 
  10. Invertibility of boundary integral operators of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-07, Linköping Univ., Sweden. 
  11. Solvability of a boundary integral equation on a polyhedron, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden. 
  12. Funktionalanalysis, Teubner, Stuttgart, 1975. (1975) Zbl0309.47001MR0482021
  13. 10.1016/0022-247X(77)90294-3, J. Math. Anal. Appl. 57 (1977), 170–202. (1977) MR0430513DOI10.1016/0022-247X(77)90294-3
  14. Integral Operators in Potential Theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. (1980) MR0590244
  15. 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511–547. (1966) MR0209503DOI10.2307/1994580
  16. Some examples concerning applicability of the Fredholm-Radon method in potential heory, Aplikace matematiky 31 (1986), 239–308. (1986) MR0854323
  17. Fundamentals of Modern Potential Theory, Izdat. Nauka, Moscow, 1966. (1966) MR0214795
  18. Measure and Integral, Matfyzpress, 1995. (1995) MR2316454
  19. Boundary integral equations . Sovremennyje problemy matematiki, fundamental’nyje napravlenija , 27, Viniti, Moskva, 1988. (Russian) (1988) 
  20. 10.1023/A:1022818618177, Czechoslov. Math. J. 47 (1997), 651–679. (1997) MR1479311DOI10.1023/A:1022818618177
  21. Solution of the Neumann problem for the Laplace equation, Czechoslov. Math. J. (in print ). MR1658269
  22. The Robin problem in potential theory, Comment. Math. Univ. Carolinae 12 (1971), 205–211. (1971) Zbl0215.42602MR0287021
  23. Generalized Robin problem in potential theory, Czechoslov. Math. J. 22(97) (1972), 312–324. (1972) Zbl0241.31008MR0294673
  24. An operator connected with the third boundary value problem in potential theory, Czechoslov. Math. J. 22(97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
  25. The third boundary value problem in potential theory, Czechoslov. Math. J. 2(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
  26. Fredholm radius of a potential theoretic operator for convex sets, Čas. pěst. mat. 100 (1975), 374–383. (1975) Zbl0314.31006MR0419794
  27. Continuity and maximum principle for potentials of signed measures, Czechoslov. Math. J. 25 (1975), 309–316. (1975) Zbl0309.31019MR0382690
  28. Potentialtheoretische Untersuchungen, B. G. Teubner, Leipzig, 1911. (1911) 
  29. 10.1080/00036819208840093, Applicable Analysis 45 (1992), 1–4, 135–177. (1992) MR1293594DOI10.1080/00036819208840093
  30. 10.1080/00036819508840313, Applicable Analysis 56 (1995), 109–115. (1995) MR1378015DOI10.1080/00036819508840313
  31. ARRAY(0x9e2e418), Izdat. Leningr. Univ., Leningrad, 1966, pp. 35–44. (Russian Russian) (1966) 
  32. Principles of Funtional Analysis, Academic Press, London, 1971. (1971) MR0445263
  33. Functional Analysis, Springer Verlag, 1965. (1965) Zbl0126.11504
  34. Weakly Differentiable Functions: Sobolev spaces and functions of bounded variation. Graduate Text in Mathematics 120, Springer-Verlag, 1989. (1989) MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.