Solution of the Robin problem for the Laplace equation
Applications of Mathematics (1998)
- Volume: 43, Issue: 2, page 133-155
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMedková, Dagmar. "Solution of the Robin problem for the Laplace equation." Applications of Mathematics 43.2 (1998): 133-155. <http://eudml.org/doc/33003>.
@article{Medková1998,
abstract = {For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.},
author = {Medková, Dagmar},
journal = {Applications of Mathematics},
keywords = {Laplace equation; Robin problem; single layer potential; Laplace equation; Robin problem; single layer potential},
language = {eng},
number = {2},
pages = {133-155},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solution of the Robin problem for the Laplace equation},
url = {http://eudml.org/doc/33003},
volume = {43},
year = {1998},
}
TY - JOUR
AU - Medková, Dagmar
TI - Solution of the Robin problem for the Laplace equation
JO - Applications of Mathematics
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 2
SP - 133
EP - 155
AB - For open sets with a piecewise smooth boundary it is shown that we can express a solution of the Robin problem for the Laplace equation in the form of a single layer potential of a signed measure which is given by a concrete series.
LA - eng
KW - Laplace equation; Robin problem; single layer potential; Laplace equation; Robin problem; single layer potential
UR - http://eudml.org/doc/33003
ER -
References
top- 10.1016/0022-247X(78)90268-8, J. Math. Anal. Appl. 66 (1978), 37–54. (1978) MR0513484DOI10.1016/0022-247X(78)90268-8
- Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
- Éléments de la théorie classique du potentiel, Centre de documentation universitaire. Paris, 1961. (1961) MR0106366
- Potential theory and function theory for irregular regions. Seminars in mathematics V. A. Steklov Mathematical Institute, Leningrad, 1969. (Russian) (1969) MR0240284
- Tricomi potentials. Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences.Praha, 1988. (Slovak) (1988)
- Geometric Measure Theory, Springer-Verlag, 1969. (1969) Zbl0176.00801MR0257325
- Some remarks on topologically equivalent norms, Izvestija Mold. Fil. Akad. Nauk SSSR 10 (76) (1960), 91–95. (Russian) (1960)
- On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ. 19(4) (1986), 60–64. (Russian) (1986) MR0880678
- Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-06, Linköping Univ.,Sweden.
- Invertibility of boundary integral operators of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-07, Linköping Univ., Sweden.
- Solvability of a boundary integral equation on a polyhedron, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
- Funktionalanalysis, Teubner, Stuttgart, 1975. (1975) Zbl0309.47001MR0482021
- 10.1016/0022-247X(77)90294-3, J. Math. Anal. Appl. 57 (1977), 170–202. (1977) MR0430513DOI10.1016/0022-247X(77)90294-3
- Integral Operators in Potential Theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. (1980) MR0590244
- 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511–547. (1966) MR0209503DOI10.2307/1994580
- Some examples concerning applicability of the Fredholm-Radon method in potential heory, Aplikace matematiky 31 (1986), 239–308. (1986) MR0854323
- Fundamentals of Modern Potential Theory, Izdat. Nauka, Moscow, 1966. (1966) MR0214795
- Measure and Integral, Matfyzpress, 1995. (1995) MR2316454
- Boundary integral equations . Sovremennyje problemy matematiki, fundamental’nyje napravlenija , 27, Viniti, Moskva, 1988. (Russian) (1988)
- 10.1023/A:1022818618177, Czechoslov. Math. J. 47 (1997), 651–679. (1997) MR1479311DOI10.1023/A:1022818618177
- Solution of the Neumann problem for the Laplace equation, Czechoslov. Math. J. (in print ). MR1658269
- The Robin problem in potential theory, Comment. Math. Univ. Carolinae 12 (1971), 205–211. (1971) Zbl0215.42602MR0287021
- Generalized Robin problem in potential theory, Czechoslov. Math. J. 22(97) (1972), 312–324. (1972) Zbl0241.31008MR0294673
- An operator connected with the third boundary value problem in potential theory, Czechoslov. Math. J. 22(97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
- The third boundary value problem in potential theory, Czechoslov. Math. J. 2(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
- Fredholm radius of a potential theoretic operator for convex sets, Čas. pěst. mat. 100 (1975), 374–383. (1975) Zbl0314.31006MR0419794
- Continuity and maximum principle for potentials of signed measures, Czechoslov. Math. J. 25 (1975), 309–316. (1975) Zbl0309.31019MR0382690
- Potentialtheoretische Untersuchungen, B. G. Teubner, Leipzig, 1911. (1911)
- 10.1080/00036819208840093, Applicable Analysis 45 (1992), 1–4, 135–177. (1992) MR1293594DOI10.1080/00036819208840093
- 10.1080/00036819508840313, Applicable Analysis 56 (1995), 109–115. (1995) MR1378015DOI10.1080/00036819508840313
- ARRAY(0x9e2e418), Izdat. Leningr. Univ., Leningrad, 1966, pp. 35–44. (Russian Russian) (1966)
- Principles of Funtional Analysis, Academic Press, London, 1971. (1971) MR0445263
- Functional Analysis, Springer Verlag, 1965. (1965) Zbl0126.11504
- Weakly Differentiable Functions: Sobolev spaces and functions of bounded variation. Graduate Text in Mathematics 120, Springer-Verlag, 1989. (1989) MR1014685
Citations in EuDML Documents
top- Dagmar Medková, The Neumann problem for the Laplace equation on general domains
- Dagmar Medková, Continuous extendibility of solutions of the Neumann problem for the Laplace equation
- Dagmar Medková, Continuous extendibility of solutions of the third problem for the Laplace equation
- Dagmar Medková, Boundedness of the solution of the third problem for the Laplace equation
- Dagmar Medková, Solution of the Dirichlet problem for the Laplace equation
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.