The boundary-value problems for Laplace equation and domains with nonsmooth boundary

Dagmar Medková

Archivum Mathematicum (1998)

  • Volume: 034, Issue: 1, page 173-181
  • ISSN: 0044-8753

Abstract

top
Dirichlet, Neumann and Robin problem for the Laplace equation is investigated on the open set with holes and nonsmooth boundary. The solutions are looked for in the form of a double layer potential and a single layer potential. The measure, the potential of which is a solution of the boundary-value problem, is constructed.

How to cite

top

Medková, Dagmar. "The boundary-value problems for Laplace equation and domains with nonsmooth boundary." Archivum Mathematicum 034.1 (1998): 173-181. <http://eudml.org/doc/18525>.

@article{Medková1998,
abstract = {Dirichlet, Neumann and Robin problem for the Laplace equation is investigated on the open set with holes and nonsmooth boundary. The solutions are looked for in the form of a double layer potential and a single layer potential. The measure, the potential of which is a solution of the boundary-value problem, is constructed.},
author = {Medková, Dagmar},
journal = {Archivum Mathematicum},
keywords = {Laplace equation; Dirichlet problem; Neumann problem; Robin problem; double layer potential; Dirichlet problem; Neumann problem; Robin problem; domains with holes; single layer potential},
language = {eng},
number = {1},
pages = {173-181},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The boundary-value problems for Laplace equation and domains with nonsmooth boundary},
url = {http://eudml.org/doc/18525},
volume = {034},
year = {1998},
}

TY - JOUR
AU - Medková, Dagmar
TI - The boundary-value problems for Laplace equation and domains with nonsmooth boundary
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 1
SP - 173
EP - 181
AB - Dirichlet, Neumann and Robin problem for the Laplace equation is investigated on the open set with holes and nonsmooth boundary. The solutions are looked for in the form of a double layer potential and a single layer potential. The measure, the potential of which is a solution of the boundary-value problem, is constructed.
LA - eng
KW - Laplace equation; Dirichlet problem; Neumann problem; Robin problem; double layer potential; Dirichlet problem; Neumann problem; Robin problem; domains with holes; single layer potential
UR - http://eudml.org/doc/18525
ER -

References

top
  1. R. S. Angell R. E. Kleinman J. Král, Layer potentials on boundaries with corners and edges, Čas. pěst. mat., 113 (1988), 387–402. (1988) Zbl0697.31005MR0981880
  2. Yu. D. Burago V. G. Maz’ ya, Potential theory and function theory for irregular regions, Seminars in mathematics V. A. Steklov Mathematical Institute, Leningrad, 1969. (1969) MR0240284
  3. N. V. Grachev V. G. Maz’ya, On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ., 19 (4), 1986, 60–64. (1986) MR0880678
  4. N. V. Grachev V. G. Maz’ya, Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-06, Linköping Univ., Sweden. 
  5. N. V. Grachev V. G. Maz’ya, Invertibility of boundary integral operators of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-07, Linköping Univ., Sweden. 
  6. N. V. Grachev V. G. Maz’ya, Solvability of a boundary integral equation on a polyhedron, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden. 
  7. M. Chlebík, Tricomi Potentials, Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha 1988 (in Slovak). (1988) 
  8. J. Král, On double-layer potential in multidimensional space, Dokl. Akad. Nauk SSSR, 159 (1964). (1964) MR0176210
  9. J. Král, Integral Operators in Potential Theory, Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. (1980) MR0590244
  10. J. Král, The Fredholm method in potential theory, Trans. Amer. Math. Soc., 125 (1966), 511–547. (1966) MR0209503
  11. J. Král I. Netuka, Contractivity of C. Neumann’s operator in potential theory, Journal of the Mathematical Analysis and its Applications, 61 (1977), 607–619. (1977) Zbl0372.31004MR0508010
  12. J. Král W. L. Wendland, Some examples concerning applicability of the Fredholm-Radon method in potential heory, Aplikace matematiky, 31 (1986), 239–308. (1986) Zbl0615.31005MR0854323
  13. R. Kress G. F. Roach, On the convergence of successive approximations for an integral equation in a Green’s function approach to the Dirichlet problem, Journal of mathematical analysis and applications, 55 (1976), 102–111. (1976) Zbl0343.35024MR0411214
  14. V. Maz’ya A. Solov’ev, On the boundary integral equation of the Neumann problem in a domain with a peak, Amer. Math. Soc. Transl., 155 (1993), 101–127. (1993) 
  15. D. Medková, The third boundary value problem in potential theory for domains with a piecewise smooth boundary, Czech. Math. J., 47 (1997), 651–679. (1997) Zbl0978.31003MR1479311
  16. D. Medková, Solution of the Neumann problem for the Laplace equation, Czech. Math. J. (in print). Zbl0949.31004
  17. D. Medková, Solution of the Robin problem for the Laplace equation, preprint No.120, Academy of Sciences of the Czech republic, 1997. (1997) Zbl0938.31005MR1609158
  18. I. Netuka, Smooth surfaces with infinite cyclic variation, Čas. pěst. mat., 96 (1971). (1971) Zbl0204.08002MR0284553
  19. I. Netuka, The Robin problem in potential theory, Comment. Math. Univ. Carolinae, 12 (1971), 205–211. (1971) Zbl0215.42602MR0287021
  20. I. Netuka, Generalized Robin problem in potential theory, Czech. Math. J., 22 (97) (1972), 312–324. (1972) Zbl0241.31008MR0294673
  21. I. Netuka, An operator connected with the third boundary value problem in potential theory, Czech Math. J., 22 (97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
  22. I. Netuka, The third boundary value problem in potential theory, Czech. Math. J., 2 (97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
  23. I. Netuka, Fredholm radius of a potential theoretic operator for convex sets, Čas. pěst. mat., 100 (1975), 374–383. (1975) Zbl0314.31006MR0419794
  24. C. Neumann, Untersuchungen über das logarithmische und Newtonsche Potential, Teubner Verlag, Leipzig, 1877. Zbl10.0658.05
  25. C. Neumann, Zur Theorie des logarithmischen und des Newtonschen Potentials, Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, 22, 1870, 49–56, 264–321. Zbl03.0493.01
  26. C. Neumann, Über die Methode des arithmetischen Mittels, Hirzel, Leipzig, 1887 (erste Abhandlung), 1888 (zweite Abhandlung). Zbl19.1029.01
  27. J. Radon, Über Randwertaufgaben beim logarithmischen Potential, Sitzber. Akad. Wiss. Wien, 128, 1919, 1123–1167. (1919) Zbl47.0457.01
  28. A. Rathsfeld, The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method, Applicable Analysis, 45, (1992), 1–4, 135–177. (1992) Zbl0749.31003MR1293594
  29. A. Rathsfeld, The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Erratum, Applicable Analysis, 56 (1995), 109–115. (1995) Zbl0921.31004MR1378015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.