The boundary-value problems for Laplace equation and domains with nonsmooth boundary
Archivum Mathematicum (1998)
- Volume: 034, Issue: 1, page 173-181
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMedková, Dagmar. "The boundary-value problems for Laplace equation and domains with nonsmooth boundary." Archivum Mathematicum 034.1 (1998): 173-181. <http://eudml.org/doc/18525>.
@article{Medková1998,
abstract = {Dirichlet, Neumann and Robin problem for the Laplace equation is investigated on the open set with holes and nonsmooth boundary. The solutions are looked for in the form of a double layer potential and a single layer potential. The measure, the potential of which is a solution of the boundary-value problem, is constructed.},
author = {Medková, Dagmar},
journal = {Archivum Mathematicum},
keywords = {Laplace equation; Dirichlet problem; Neumann problem; Robin problem; double layer potential; Dirichlet problem; Neumann problem; Robin problem; domains with holes; single layer potential},
language = {eng},
number = {1},
pages = {173-181},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The boundary-value problems for Laplace equation and domains with nonsmooth boundary},
url = {http://eudml.org/doc/18525},
volume = {034},
year = {1998},
}
TY - JOUR
AU - Medková, Dagmar
TI - The boundary-value problems for Laplace equation and domains with nonsmooth boundary
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 1
SP - 173
EP - 181
AB - Dirichlet, Neumann and Robin problem for the Laplace equation is investigated on the open set with holes and nonsmooth boundary. The solutions are looked for in the form of a double layer potential and a single layer potential. The measure, the potential of which is a solution of the boundary-value problem, is constructed.
LA - eng
KW - Laplace equation; Dirichlet problem; Neumann problem; Robin problem; double layer potential; Dirichlet problem; Neumann problem; Robin problem; domains with holes; single layer potential
UR - http://eudml.org/doc/18525
ER -
References
top- R. S. Angell R. E. Kleinman J. Král, Layer potentials on boundaries with corners and edges, Čas. pěst. mat., 113 (1988), 387–402. (1988) MR0981880
- Yu. D. Burago V. G. Maz’ ya, Potential theory and function theory for irregular regions, Seminars in mathematics V. A. Steklov Mathematical Institute, Leningrad, 1969. (1969) MR0240284
- N. V. Grachev V. G. Maz’ya, On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ., 19 (4), 1986, 60–64. (1986) MR0880678
- N. V. Grachev V. G. Maz’ya, Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-06, Linköping Univ., Sweden.
- N. V. Grachev V. G. Maz’ya, Invertibility of boundary integral operators of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-07, Linköping Univ., Sweden.
- N. V. Grachev V. G. Maz’ya, Solvability of a boundary integral equation on a polyhedron, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
- M. Chlebík, Tricomi Potentials, Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha 1988 (in Slovak). (1988)
- J. Král, On double-layer potential in multidimensional space, Dokl. Akad. Nauk SSSR, 159 (1964). (1964) MR0176210
- J. Král, Integral Operators in Potential Theory, Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. (1980) MR0590244
- J. Král, The Fredholm method in potential theory, Trans. Amer. Math. Soc., 125 (1966), 511–547. (1966) MR0209503
- J. Král I. Netuka, Contractivity of C. Neumann’s operator in potential theory, Journal of the Mathematical Analysis and its Applications, 61 (1977), 607–619. (1977) MR0508010
- J. Král W. L. Wendland, Some examples concerning applicability of the Fredholm-Radon method in potential heory, Aplikace matematiky, 31 (1986), 239–308. (1986) MR0854323
- R. Kress G. F. Roach, On the convergence of successive approximations for an integral equation in a Green’s function approach to the Dirichlet problem, Journal of mathematical analysis and applications, 55 (1976), 102–111. (1976) MR0411214
- V. Maz’ya A. Solov’ev, On the boundary integral equation of the Neumann problem in a domain with a peak, Amer. Math. Soc. Transl., 155 (1993), 101–127. (1993)
- D. Medková, The third boundary value problem in potential theory for domains with a piecewise smooth boundary, Czech. Math. J., 47 (1997), 651–679. (1997) MR1479311
- D. Medková, Solution of the Neumann problem for the Laplace equation, Czech. Math. J. (in print).
- D. Medková, Solution of the Robin problem for the Laplace equation, preprint No.120, Academy of Sciences of the Czech republic, 1997. (1997) MR1609158
- I. Netuka, Smooth surfaces with infinite cyclic variation, Čas. pěst. mat., 96 (1971). (1971) Zbl0204.08002MR0284553
- I. Netuka, The Robin problem in potential theory, Comment. Math. Univ. Carolinae, 12 (1971), 205–211. (1971) Zbl0215.42602MR0287021
- I. Netuka, Generalized Robin problem in potential theory, Czech. Math. J., 22 (97) (1972), 312–324. (1972) Zbl0241.31008MR0294673
- I. Netuka, An operator connected with the third boundary value problem in potential theory, Czech Math. J., 22 (97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
- I. Netuka, The third boundary value problem in potential theory, Czech. Math. J., 2 (97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
- I. Netuka, Fredholm radius of a potential theoretic operator for convex sets, Čas. pěst. mat., 100 (1975), 374–383. (1975) Zbl0314.31006MR0419794
- C. Neumann, Untersuchungen über das logarithmische und Newtonsche Potential, Teubner Verlag, Leipzig, 1877.
- C. Neumann, Zur Theorie des logarithmischen und des Newtonschen Potentials, Berichte über die Verhandlungen der Königlich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, 22, 1870, 49–56, 264–321.
- C. Neumann, Über die Methode des arithmetischen Mittels, Hirzel, Leipzig, 1887 (erste Abhandlung), 1888 (zweite Abhandlung).
- J. Radon, Über Randwertaufgaben beim logarithmischen Potential, Sitzber. Akad. Wiss. Wien, 128, 1919, 1123–1167. (1919)
- A. Rathsfeld, The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method, Applicable Analysis, 45, (1992), 1–4, 135–177. (1992) MR1293594
- A. Rathsfeld, The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Erratum, Applicable Analysis, 56 (1995), 109–115. (1995) MR1378015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.