The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Asymptotic behavior of solutions of a 2 n t h order nonlinear differential equation”

On oscillation of solutions of forced nonlinear neutral differential equations of higher order II

N. Parhi, R. N. Rath (2003)

Annales Polonici Mathematici

Similarity:

Sufficient conditions are obtained so that every solution of [ y ( t ) - p ( t ) y ( t - τ ) ] ( n ) + Q ( t ) G ( y ( t - σ ) ) = f ( t ) where n ≥ 2, p,f ∈ C([0,∞),ℝ), Q ∈ C([0,∞),[0,∞)), G ∈ C(ℝ,ℝ), τ > 0 and σ ≥ 0, oscillates or tends to zero as t . Various ranges of p(t) are considered. In order to accommodate sublinear cases, it is assumed that 0 Q ( t ) d t = . Through examples it is shown that if the condition on Q is weakened, then there are sublinear equations whose solutions tend to ±∞ as t → ∞.

On asymptotic behavior of solutions to Emden-Fowler type higher-order differential equations

Irina Astashova (2015)

Mathematica Bohemica

Similarity:

For the equation y ( n ) + | y | k sgn y = 0 , k > 1 , n = 3 , 4 , existence of oscillatory solutions y = ( x * - x ) - α h ( log ( x * - x ) ) , α = n k - 1 , x < x * , is proved, where x * is an arbitrary point and h is a periodic non-constant function on . The result on existence of such solutions with a positive periodic non-constant function h on is formulated for the equation y ( n ) = | y | k sgn y , k > 1 , n = 12 , 13 , 14 .

On the spectrum of the operator which is a composition of integration and substitution

Ignat Domanov (2008)

Studia Mathematica

Similarity:

Let ϕ: [0,1] → [0,1] be a nondecreasing continuous function such that ϕ(x) > x for all x ∈ (0,1). Let the operator V ϕ : f ( x ) 0 ϕ ( x ) f ( t ) d t be defined on L₂[0,1]. We prove that V ϕ has a finite number of nonzero eigenvalues if and only if ϕ(0) > 0 and ϕ(1-ε) = 1 for some 0 < ε < 1. Also, we show that the spectral trace of the operator V ϕ always equals 1.

Oscillation criteria for fourth order half-linear differential equations

Jaroslav Jaroš, Kusano Takaŝi, Tomoyuki Tanigawa (2020)

Archivum Mathematicum

Similarity:

Criteria for oscillatory behavior of solutions of fourth order half-linear differential equations of the form ( | y ' ' | α sgn y ' ' ) ' ' + q ( t ) | y | α sgn y = 0 , t a > 0 , A where α > 0 is a constant and q ( t ) is positive continuous function on [ a , ) , are given in terms of an increasing continuously differentiable function ω ( t ) from [ a , ) to ( 0 , ) which satisfies a 1 / ( t ω ( t ) ) d t < .

A weighted inequality for the Hardy operator involving suprema

Pavla Hofmanová (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let u be a weight on ( 0 , ) . Assume that u is continuous on ( 0 , ) . Let the operator S u be given at measurable non-negative function ϕ on ( 0 , ) by S u ϕ ( t ) = sup 0 < τ t u ( τ ) ϕ ( τ ) . We characterize weights v , w on ( 0 , ) for which there exists a positive constant C such that the inequality 0 [ S u ϕ ( t ) ] q w ( t ) d t 1 q 0 [ ϕ ( t ) ] p v ( t ) d t 1 p holds for every 0 < p , q < . Such inequalities have been used in the study of optimal Sobolev embeddings and boundedness of certain operators on classical Lorenz spaces.

Asymptotics for Eigenvalues of a Non-Linear Integral System

D.E. Edmunds, J. Lang (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

Let I = [ a , b ] , let 1 < q , p < , let u and v be positive functions with u L p ( I ) e v L q ( I ) and let T : L p ( I ) L q ( I ) be the Hardy-type operator given by ( T f ) ( x ) = v ( x ) a x f ( t ) u ( t ) d t , x I . We show that the asymptotic behavior of the eigenvalues λ of the non-linear integral system g ( x ) = ( T F ) ( x ) ( f ( x ) ) ( p ) = λ ( T * g ( p ) ) ) ( x ) (where, for example, t ( p ) = | t | p - 1 sgn ( t ) is given by lim n n λ ^ n ( T ) = c p , q I ( u v ) r ) 1 / r d t 1 / r , for 1 < p < q < lim n n λ ˇ n ( T ) = c p , q I ( u v ) r d t 1 / r for 1 < q < p < Here r = 1 p + 1 p , c p , q is an explicit constant depending only on p and q , λ ^ ( T ) = max ( s p n ( T , p , q ) ) , λ ˇ n ( T ) = min ( s p n ( T , p , q ) ) where s p n ( T , p , q ) stands for the set of all eigenvalues λ corresponding to eigenfunctions g with n zeros.

Nonrectifiable oscillatory solutions of second order linear differential equations

Takanao Kanemitsu, Satoshi Tanaka (2017)

Archivum Mathematicum

Similarity:

The second order linear differential equation ( p ( x ) y ' ) ' + q ( x ) y = 0 , x ( 0 , x 0 ] is considered, where p , q C 1 ( 0 , x 0 ] , p ( x ) > 0 , q ( x ) > 0 for x ( 0 , x 0 ] . Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near x = 0 without the Hartman–Wintner condition.