Displaying similar documents to “Equivalence bimodule between non-commutative tori”

The Group of Invertible Elements of the Algebra of Quaternions

Irina A. Kuzmina, Marie Chodorová (2016)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

We have, that all two-dimensional subspaces of the algebra of quaternions, containing a unit, are 2-dimensional subalgebras isomorphic to the algebra of complex numbers. It was proved in the papers of N. E. Belova. In the present article we consider a 2-dimensional subalgebra ( i ) of complex numbers with basis 1 , i and we construct the principal locally trivial bundle which is isomorphic to the Hopf fibration.

On twisted group algebras of OTP representation type

Leonid F. Barannyk, Dariusz Klein (2012)

Colloquium Mathematicae

Similarity:

Assume that S is a commutative complete discrete valuation domain of characteristic p, S* is the unit group of S and G = G p × B is a finite group, where G p is a p-group and B is a p’-group. Denote by S λ G the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). We give necessary and sufficient conditions for S λ G to be of OTP representation type, in the sense that every indecomposable S λ G -module is isomorphic to the outer tensor product V W of an indecomposable S λ G p -module V and an irreducible...

Finite groups of OTP projective representation type over a complete discrete valuation domain of positive characteristic

Leonid F. Barannyk, Dariusz Klein (2012)

Colloquium Mathematicae

Similarity:

Let S be a commutative complete discrete valuation domain of positive characteristic p, S* the unit group of S, Ω a subgroup of S* and G = G p × B a finite group, where G p is a p-group and B is a p’-group. Denote by S λ G the twisted group algebra of G over S with a 2-cocycle λ ∈ Z²(G,S*). For Ω satisfying a specific condition, we give necessary and sufficient conditions for G to be of OTP projective (S,Ω)-representation type, in the sense that there exists a cocycle λ ∈ Z²(G,Ω) such that every indecomposable...

Non-orbit equivalent actions of 𝔽 n

Adrian Ioana (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

For any 2 n , we construct a concrete 1-parameter family of non-orbit equivalent actions of the free group 𝔽 n . These actions arise as diagonal products between a generalized Bernoulli action and the action 𝔽 n ( 𝕋 2 , λ 2 ) , where 𝔽 n is seen as a subgroup of SL 2 ( ) .

Shadowing in actions of some Abelian groups

Sergei Yu. Pilyugin, Sergei B. Tikhomirov (2003)

Fundamenta Mathematicae

Similarity:

We study shadowing properties of continuous actions of the groups p and p × p . Necessary and sufficient conditions are given under which a linear action of p on m has a Lipschitz shadowing property.

A note on group algebras of p -primary abelian groups

William Ullery (1995)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Suppose p is a prime number and R is a commutative ring with unity of characteristic 0 in which p is not a unit. Assume that G and H are p -primary abelian groups such that the respective group algebras R G and R H are R -isomorphic. Under certain restrictions on the ideal structure of R , it is shown that G and H are isomorphic.

Generalized non-commutative tori

Chun-Gil Park (2002)

Studia Mathematica

Similarity:

The generalized non-commutative torus T ϱ k of rank n is defined by the crossed product A m / k × α × α . . . × α , where the actions α i of ℤ on the fibre M k ( ) of a rational rotation algebra A m / k are trivial, and C * ( k × k ) × α × α . . . × α is a non-commutative torus A ϱ . It is shown that T ϱ k is strongly Morita equivalent to A ϱ , and that T ϱ k M p is isomorphic to A ϱ M k ( ) M p if and only if the set of prime factors of k is a subset of the set of prime factors of p.

Matrix representation of finite effect algebras

Grzegorz Bińczak, Joanna Kaleta, Andrzej Zembrzuski (2023)

Kybernetika

Similarity:

In this paper we present representation of finite effect algebras by matrices. For each non-trivial finite effect algebra E we construct set of matrices M ( E ) in such a way that effect algebras E 1 and E 2 are isomorphic if and only if M ( E 1 ) = M ( E 2 ) . The paper also contains the full list of matrices representing all nontrivial finite effect algebras of cardinality at most 8 .