The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An improvement of an inequality of Fiedler leading to a new conjecture on nonnegative matrices”

Nested matrices and inverse M -matrices

Jeffrey L. Stuart (2015)

Czechoslovak Mathematical Journal

Similarity:

Given a sequence of real or complex numbers, we construct a sequence of nested, symmetric matrices. We determine the L U - and Q R -factorizations, the determinant and the principal minors for such a matrix. When the sequence is real, positive and strictly increasing, the matrices are strictly positive, inverse M -matrices with symmetric, irreducible, tridiagonal inverses.

On the matrix negative Pell equation

Aleksander Grytczuk, Izabela Kurzydło (2009)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let N be a set of natural numbers and Z be a set of integers. Let M₂(Z) denotes the set of all 2x2 matrices with integer entries. We give necessary and suficient conditions for solvability of the matrix negative Pell equation (P) X² - dY² = -I with d ∈ N for nonsingular X,Y belonging to M₂(Z) and his generalization (Pn) i = 1 n X i - d i = 1 n Y ² i = - I with d ∈ N for nonsingular X i , Y i M ( Z ) , i=1,...,n.

A geometric construction for spectrally arbitrary sign pattern matrices and the 2 n -conjecture

Dipak Jadhav, Rajendra Deore (2023)

Czechoslovak Mathematical Journal

Similarity:

We develop a geometric method for studying the spectral arbitrariness of a given sign pattern matrix. The method also provides a computational way of computing matrix realizations for a given characteristic polynomial. We also provide a partial answer to 2 n -conjecture. We determine that the 2 n -conjecture holds for the class of spectrally arbitrary patterns that have a column or row with at least n - 1 nonzero entries.

Some properties complementary to Brualdi-Li matrices

Chuanlong Wang, Xuerong Yong (2015)

Czechoslovak Mathematical Journal

Similarity:

In this paper we derive new properties complementary to an 2 n × 2 n Brualdi-Li tournament matrix B 2 n . We show that B 2 n has exactly one positive real eigenvalue and one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary parts of its eigenvalues. The inverse of B 2 n is also determined. Related results obtained in previous articles are proven to be corollaries.

Circulant matrices with orthogonal rows and off-diagonal entries of absolute value 1

Daniel Uzcátegui Contreras, Dardo Goyeneche, Ondřej Turek, Zuzana Václavíková (2021)

Communications in Mathematics

Similarity:

It is known that a real symmetric circulant matrix with diagonal entries d 0 , off-diagonal entries ± 1 and orthogonal rows exists only of order 2 d + 2 (and trivially of order 1 ) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries d 0 and any complex entries of absolute value 1 off the diagonal. As a particular case, we consider...

Localization of dominant eigenpairs and planted communities by means of Frobenius inner products

Dario Fasino, Francesco Tudisco (2016)

Czechoslovak Mathematical Journal

Similarity:

We propose a new localization result for the leading eigenvalue and eigenvector of a symmetric matrix A . The result exploits the Frobenius inner product between A and a given rank-one landmark matrix X . Different choices for X may be used, depending on the problem under investigation. In particular, we show that the choice where X is the all-ones matrix allows to estimate the signature of the leading eigenvector of A , generalizing previous results on Perron-Frobenius properties of matrices...