Cauchy problem for hyperbolic systems in Gevrey class. A note on Gevrey indices
Hideo Yamahara (2000)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Hideo Yamahara (2000)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Marvin Zeman (1980)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Waichiro Matsumoto (1998-1999)
Séminaire Équations aux dérivées partielles
Similarity:
The author propose what is the principal part of linear systems of partial differential equations in the Cauchy problem through the normal form of systems in the meromorphic formal symbol class and the theory of weighted determinant. As applications, he choose the necessary and sufficient conditions for the analytic well-posedness ( Cauchy-Kowalevskaya theorem ) and well-posedness (Levi condition).
Marija Skendžić (1970)
Publications de l'Institut Mathématique
Similarity:
J. Ligęza (1975)
Colloquium Mathematicae
Similarity:
Henryk Kołakowski, Jarosław Łazuka (2008)
Applicationes Mathematicae
Similarity:
The aim of this paper is to derive a formula for the solution to the Cauchy problem for the linear system of partial differential equations describing nonsimple thermoelasticity. Some properties of the solution are also presented. It is a first step to study the nonlinear case.
Jan Persson (1976)
Publications mathématiques et informatique de Rennes
Similarity:
Francis Ribaud (1998)
Revista Matemática Iberoamericana
Similarity:
We study local and global Cauchy problems for the Semilinear Parabolic Equations ∂U - ΔU = P(D) F(U) with initial data in fractional Sobolev spaces H (R). In most of the studies on this subject, the initial data U(x) belongs to Lebesgue spaces L(R) or to supercritical fractional Sobolev spaces H (R) (s > n/p). Our purpose is to study the intermediate cases (namely for 0 < s < n/p). We give some mapping properties for functions with polynomial...