Displaying similar documents to “Derivation of BiCG from the conditions defining Lanczos' method for solving a system of linear equations”

A viscosity-proximal gradient method with inertial extrapolation for solving certain minimization problems in Hilbert space

L.O. Jolaoso, H.A. Abass, O.T. Mewomo (2019)

Archivum Mathematicum

Similarity:

In this paper, we study the strong convergence of the proximal gradient algorithm with inertial extrapolation term for solving classical minimization problem and finding the fixed points of δ -demimetric mapping in a real Hilbert space. Our algorithm is inspired by the inertial proximal point algorithm and the viscosity approximation method of Moudafi. A strong convergence result is achieved in our result without necessarily imposing the summation condition n = 1 β n x n - 1 - x n < + on the inertial term. Finally,...

Using successive approximations for improving the convergence of GMRES method

Jan Zítko (1998)

Applications of Mathematics

Similarity:

In this paper, our attention is concentrated on the GMRES method for the solution of the system ( I - T ) x = b of linear algebraic equations with a nonsymmetric matrix. We perform m pre-iterations y l + 1 = T y l + b before starting GMRES and put y m for the initial approximation in GMRES. We derive an upper estimate for the norm of the error vector in dependence on the m th powers of eigenvalues of the matrix T . Further we study under what eigenvalues lay-out this upper estimate is the best one. The estimate shows and...

On the weighted Euclidean matching problem in d

Birgit Anthes, Ludger Rüschendorf (2001)

Applicationes Mathematicae

Similarity:

A partitioning algorithm for the Euclidean matching problem in d is introduced and analyzed in a probabilistic model. The algorithm uses elements from the fixed dissection algorithm of Karp and Steele (1985) and the Zig-Zag algorithm of Halton and Terada (1982) for the traveling salesman problem. The algorithm runs in expected time n ( l o g n ) p - 1 and approximates the optimal matching in the probabilistic sense.

An interior-point algorithm for semidefinite least-squares problems

Chafia Daili, Mohamed Achache (2022)

Applications of Mathematics

Similarity:

We propose a feasible primal-dual path-following interior-point algorithm for semidefinite least squares problems (SDLS). At each iteration, the algorithm uses only full Nesterov-Todd steps with the advantage that no line search is required. Under new appropriate choices of the parameter β which defines the size of the neighborhood of the central-path and of the parameter θ which determines the rate of decrease of the barrier parameter, we show that the proposed algorithm is well defined...

A stochastic mirror-descent algorithm for solving A X B = C over an multi-agent system

Yinghui Wang, Songsong Cheng (2021)

Kybernetika

Similarity:

In this paper, we consider a distributed stochastic computation of A X B = C with local set constraints over an multi-agent system, where each agent over the network only knows a few rows or columns of matrixes. Through formulating an equivalent distributed optimization problem for seeking least-squares solutions of A X B = C , we propose a distributed stochastic mirror-descent algorithm for solving the equivalent distributed problem. Then, we provide the sublinear convergence of the proposed algorithm....

Distributed accelerated Nash equilibrium learning for two-subnetwork zero-sum game with bilinear coupling

Xianlin Zeng, Lihua Dou, Jinqiang Cui (2023)

Kybernetika

Similarity:

This paper proposes a distributed accelerated first-order continuous-time algorithm for O ( 1 / t 2 ) convergence to Nash equilibria in a class of two-subnetwork zero-sum games with bilinear couplings. First-order methods, which only use subgradients of functions, are frequently used in distributed/parallel algorithms for solving large-scale and big-data problems due to their simple structures. However, in the worst cases, first-order methods for two-subnetwork zero-sum games often have an asymptotic...

An improvement of Euclid's algorithm

Zítko, Jan, Kuřátko, Jan

Similarity:

The paper introduces the calculation of a greatest common divisor of two univariate polynomials. Euclid’s algorithm can be easily simulated by the reduction of the Sylvester matrix to an upper triangular form. This is performed by using c - s transformation and Q R -factorization methods. Both procedures are described and numerically compared. Computations are performed in the floating point environment.