Displaying similar documents to “Stability and consistency of the semi-implicit co-volume scheme for regularized mean curvature flow equation in level set formulation”

Stability and convergence of two discrete schemes for a degenerate solutal non-isothermal phase-field model

Francisco Guillén-González, Juan Vicente Gutiérrez-Santacreu (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We analyze two numerical schemes of Euler type in time and finite-element type with 1 -approximation in space for solving a phase-field model of a binary alloy with thermal properties. This model is written as a highly non-linear parabolic system with three unknowns: phase-field, solute concentration and temperature, where the diffusion for the temperature and solute concentration may degenerate. The first scheme is nonlinear, unconditionally stable and convergent....

Mathematical study of a petroleum-engineering scheme

Robert Eymard, Raphaèle Herbin, Anthony Michel (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

Models of two phase flows in porous media, used in petroleum engineering, lead to a system of two coupled equations with elliptic and parabolic degenerate terms, and two unknowns, the saturation and the pressure. For the purpose of their approximation, a coupled scheme, consisting in a finite volume method together with a phase-by-phase upstream weighting scheme, is used in the industrial setting. This paper presents a mathematical analysis of this coupled scheme, first showing that...

Discretization methods with analytical characteristic methods for advection-diffusion-reaction equations and 2d applications

Jürgen Geiser (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Our studies are motivated by a desire to model long-time simulations of possible scenarios for a waste disposal. Numerical methods are developed for solving the arising systems of convection-diffusion-dispersion-reaction equations, and the received results of several discretization methods are presented. We concentrate on linear reaction systems, which can be solved analytically. In the numerical methods, we use large time-steps to achieve long simulation times of about 10 000 years. We...

Convergence of a numerical scheme for a nonlinear oblique derivative boundary value problem

Florian Mehats (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We present here a discretization of a nonlinear oblique derivative boundary value problem for the heat equation in dimension two. This finite difference scheme takes advantages of the structure of the boundary condition, which can be reinterpreted as a Burgers equation in the space variables. This enables to obtain an energy estimate and to prove the convergence of the scheme. We also provide some numerical simulations of this problem and a numerical study of the stability of the scheme,...

Comparison of the 3D Numerical Schemes for Solving Curvature Driven Level Set Equation Based on Discrete Duality Finite Volumes

Dana Kotorová (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

In this work we describe two schemes for solving level set equation in 3D with a method based on finite volumes. These schemes use the so-called dual volumes as in [Coudiére, Y., Hubert, F.: A 3D discrete duality finite volume method for nonlinear elliptic equations Algoritmy 2009 (2009), 51–60.], [Hermeline, F.: A finite volume method for approximating 3D diffusion operators on general meshes Journal of Computational Physics 228, 16 (2009), 5763–5786.], where they are used for the nonlinear...