Displaying similar documents to “Constructive approximation of a ball by polytopes”

Between Paouris concentration inequality and variance conjecture

B. Fleury (2010)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We prove an almost isometric reverse Hölder inequality for the euclidean norm on an isotropic generalized Orlicz ball which interpolates Paouris concentration inequality and variance conjecture. We study in this direction the case of isotropic convex bodies with an unconditional basis and the case of general convex bodies.

Volume ratios in L p -spaces

Yehoram Gordon, Marius Junge (1999)

Studia Mathematica

Similarity:

There exists an absolute constant c 0 such that for any n-dimensional Banach space E there exists a k-dimensional subspace F ⊂ E with k≤ n/2 such that i n f e l l i p s o i d ε B E ( v o l ( B E ) / v o l ( ε ) ) 1 / n c 0 i n f z o n o i d Z B F ( v o l ( B F ) / v o l ( Z ) ) 1 / k . The concept of volume ratio with respect to p -spaces is used to prove the following distance estimate for 2 q p < : s u p F p , d i m F = n i n f G L q , d i m G = n d ( F , G ) c p q n ( q / 2 ) ( 1 / q - 1 / p ) .

Annealed upper tails for the energy of a charged polymer

Amine Asselah (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We study the upper tails for the energy of a randomly charged symmetric and transient random walk. We assume that only charges on the same site interact pairwise. We consider estimates, that is when we average over both randomness, in dimension three or more. We obtain a large deviation principle, and an explicit rate function for a large class of charge distributions.