Displaying similar documents to “Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems”

Superconvergence of a stabilized approximation for the Stokes eigenvalue problem by projection method

Pengzhan Huang (2014)

Applications of Mathematics

Similarity:

This paper presents a superconvergence result based on projection method for stabilized finite element approximation of the Stokes eigenvalue problem. The projection method is a postprocessing procedure that constructs a new approximation by using the least squares method. The paper complements the work of Li et al. (2012), which establishes the superconvergence result of the Stokes equations by the stabilized finite element method. Moreover, numerical tests confirm the theoretical analysis. ...

Acceleration of two-grid stabilized mixed finite element method for the Stokes eigenvalue problem

Xinlong Feng, Zhifeng Weng, Hehu Xie (2014)

Applications of Mathematics

Similarity:

This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical...

Two-level stabilized nonconforming finite element method for the Stokes equations

Haiyan Su, Pengzhan Huang, Xinlong Feng (2013)

Applications of Mathematics

Similarity:

In this article, we present a new two-level stabilized nonconforming finite elements method for the two dimensional Stokes problem. This method is based on a local Gauss integration technique and the mixed nonconforming finite element of the N C P 1 - P 1 pair (nonconforming linear element for the velocity, conforming linear element for the pressure). The two-level stabilized finite element method involves solving a small stabilized Stokes problem on a coarse mesh with mesh size H and a large stabilized...

Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method

Wei Chen, Qun Lin (2006)

Applications of Mathematics

Similarity:

By means of eigenvalue error expansion and integral expansion techniques, we propose and analyze the stream function-vorticity-pressure method for the eigenvalue problem associated with the Stokes equations on the unit square. We obtain an optimal order of convergence for eigenvalues and eigenfuctions. Furthermore, for the bilinear finite element space, we derive asymptotic expansions of the eigenvalue error, an efficient extrapolation and an a posteriori error estimate for the eigenvalue....