Displaying similar documents to “2-normalization of lattices”

k-Normalization and (k+1)-level inflation of varieties

Valerie Cheng, Shelly Wismath (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let τ be a type of algebras. A common measurement of the complexity of terms of type τ is the depth of a term. For k ≥ 1, an identity s ≈ t of type τ is said to be k-normal (with respect to this depth complexity measurement) if either s = t or both s and t have depth ≥ k. A variety is called k-normal if all its identities are k-normal. Taking k = 1 with respect to the usual depth valuation of terms gives the well-known property of normality of identities or varieties. For any variety...

An extension method for t-norms on subintervals to t-norms on bounded lattices

Funda Karaçal, Ümit Ertuğrul, M. Nesibe Kesicioğlu (2019)

Kybernetika

Similarity:

In this paper, a construction method on a bounded lattice obtained from a given t-norm on a subinterval of the bounded lattice is presented. The supremum distributivity of the constructed t-norm by the mentioned method is investigated under some special conditions. It is shown by an example that the extended t-norm on L from the t-norm on a subinterval of L need not be a supremum-distributive t-norm. Moreover, some relationships between the mentioned construction method and the other...

On covariety lattices

Tomasz Brengos (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

This paper shows basic properties of covariety lattices. Such lattices are shown to be infinitely distributive. The covariety lattice L C V ( K ) of subcovarieties of a covariety K of F-coalgebras, where F:Set → Set preserves arbitrary intersections is isomorphic to the lattice of subcoalgebras of a P κ -coalgebra for some cardinal κ. A full description of the covariety lattice of Id-coalgebras is given. For any topology τ there exist a bounded functor F:Set → Set and a covariety K of F-coalgebras,...

Hyperreflexivity of bilattices

Kamila Kliś-Garlicka (2016)

Czechoslovak Mathematical Journal

Similarity:

The notion of a bilattice was introduced by Shulman. A bilattice is a subspace analogue for a lattice. In this work the definition of hyperreflexivity for bilattices is given and studied. We give some general results concerning this notion. To a given lattice we can construct the bilattice Σ . Similarly, having a bilattice Σ we may consider the lattice Σ . In this paper we study the relationship between hyperreflexivity of subspace lattices and of their associated bilattices. Some examples...

A class of multiplicative lattices

Tiberiu Dumitrescu, Mihai Epure (2021)

Czechoslovak Mathematical Journal

Similarity:

We study the multiplicative lattices L which satisfy the condition a = ( a : ( a : b ) ) ( a : b ) for all a , b L . Call them sharp lattices. We prove that every totally ordered sharp lattice is isomorphic to the ideal lattice of a valuation domain with value group or . A sharp lattice L localized at its maximal elements are totally ordered sharp lattices. The converse is true if L has finite character.

On central atoms of Archimedean atomic lattice effect algebras

Martin Kalina (2010)

Kybernetika

Similarity:

If element z of a lattice effect algebra ( E , , 0 , 1 ) is central, then the interval [ 0 , z ] is a lattice effect algebra with the new top element z and with inherited partial binary operation . It is a known fact that if the set C ( E ) of central elements of E is an atomic Boolean algebra and the supremum of all atoms of C ( E ) in E equals to the top element of E , then E is isomorphic to a direct product of irreducible effect algebras ([16]). In [10] Paseka and Riečanová published as open problem whether C ( E ) is...

Reducing the lengths of slim planar semimodular lattices without changing their congruence lattices

Gábor Czédli (2024)

Mathematica Bohemica

Similarity:

Following G. Grätzer and E. Knapp (2007), a slim planar semimodular lattice, SPS lattice for short, is a finite planar semimodular lattice having no M 3 as a sublattice. An SPS lattice is a slim rectangular lattice if it has exactly two doubly irreducible elements and these two elements are complements of each other. A finite poset P is said to be JConSPS-representable if there is an SPS lattice L such that P is isomorphic to the poset J ( Con L ) of join-irreducible congruences of L . We prove that...