The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Bounds on Laplacian eigenvalues related to total and signed domination of graphs”

Remarks on spectral radius and Laplacian eigenvalues of a graph

Bo Zhou, Han Hyuk Cho (2005)

Czechoslovak Mathematical Journal

Similarity:

Let G be a graph with n vertices, m edges and a vertex degree sequence ( d 1 , d 2 , , d n ) , where d 1 d 2 d n . The spectral radius and the largest Laplacian eigenvalue are denoted by ρ ( G ) and μ ( G ) , respectively. We determine the graphs with ρ ( G ) = d n - 1 2 + 2 m - n d n + ( d n + 1 ) 2 4 and the graphs with d n 1 and μ ( G ) = d n + 1 2 + i = 1 n d i ( d i - d n ) + d n - 1 2 2 . We also present some sharp lower bounds for the Laplacian eigenvalues of a connected graph.

Minus total domination in graphs

Hua Ming Xing, Hai-Long Liu (2009)

Czechoslovak Mathematical Journal

Similarity:

A three-valued function f V { - 1 , 0 , 1 } defined on the vertices of a graph G = ( V , E ) is a minus total dominating function (MTDF) if the sum of its function values over any open neighborhood is at least one. That is, for every v V , f ( N ( v ) ) 1 , where N ( v ) consists of every vertex adjacent to v . The weight of an MTDF is f ( V ) = f ( v ) , over all vertices v V . The minus total domination number of a graph G , denoted γ t - ( G ) , equals the minimum weight of an MTDF of G . In this paper, we discuss some properties of minus total domination on a graph...

The cobondage number of a graph

V.R. Kulli, B. Janakiram (1996)

Discussiones Mathematicae Graph Theory

Similarity:

A set D of vertices in a graph G = (V,E) is a dominating set of G if every vertex in V-D is adjacent to some vertex in D. The domination number γ(G) of G is the minimum cardinality of a dominating set. We define the cobondage number b c ( G ) of G to be the minimum cardinality among the sets of edges X ⊆ P₂(V) - E, where P₂(V) = X ⊆ V:|X| = 2 such that γ(G+X) < γ(G). In this paper, the exact values of bc(G) for some standard graphs are found and some bounds are obtained. Also, a Nordhaus-Gaddum...

The independent resolving number of a graph

Gary Chartrand, Varaporn Saenpholphat, Ping Zhang (2003)

Mathematica Bohemica

Similarity:

For an ordered set W = { w 1 , w 2 , , w k } of vertices in a connected graph G and a vertex v of G , the code of v with respect to W is the k -vector c W ( v ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) . The set W is an independent resolving set for G if (1) W is independent in G and (2) distinct vertices have distinct codes with respect to W . The cardinality of a minimum independent resolving set in G is the independent resolving number i r ( G ) . We study the existence of independent resolving sets in graphs, characterize all nontrivial connected graphs G of order...