The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note on non-negative singular infinity-harmonic functions in the half-space.”

Asymptotics for the minimization of a Ginzburg-Landau energy in n dimensions

Paweł Strzelecki (1996)

Colloquium Mathematicae

Similarity:

We prove that minimizers u W 1 , n of the functional E ( u ) = 1 / n | u | n d x + 1 / ( 4 n ) ( 1 - | u | 2 ) 2 d x , ⊂ n , n ≥ 3, which satisfy the Dirichlet boundary condition u = g on for g: → S n - 1 with zero topological degree, converge in W 1 , n and C l o c α for any α<1 - upon passing to a subsequence k 0 - to some minimizing n-harmonic map. This is a generalization of an earlier result obtained for n=2 by Bethuel, Brezis, and Hélein. An example of nonunique asymptotic behaviour (which cannot occur in two dimensions if deg g = 0) is presented.