On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity
Roger Temam, Xiaoming Wang (1997)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Roger Temam, Xiaoming Wang (1997)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Dragos Iftimie (1999)
Revista Matemática Iberoamericana
Similarity:
In this paper we prove global existence and uniqueness for solutions of the 3-dimensional Navier-Stokes equations with small initial data in spaces which are H in the i-th direction, δ + δ + δ = 1/2, -1/2 < δ < 1/2 and in a space which is L in the first two directions and B in the third direction, where H and B denote the usual homogeneous Sobolev and Besov spaces.
Tosio Kato, Hiroshi Fujita (1962)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Enrique Fernández-Cara, Francisco Guillén (1993)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Patrick Penel, Milan Pokorný (2004)
Applications of Mathematics
Similarity:
We study the nonstationary Navier-Stokes equations in the entire three-dimensional space and give some criteria on certain components of gradient of the velocity which ensure its global-in-time smoothness.
John G. Heywood (1979)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity: