Displaying similar documents to “On the socle of a Jordan pair.”

The triple-norm extension problem: the nondegenerate complete case.

A. Moreno Galindo (1999)

Studia Mathematica

Similarity:

We prove that, if A is an associative algebra with two commuting involutions τ and π, if A is a τ-π-tight envelope of the Jordan Triple System T:=H(A,τ) ∩ S(A,π), and if T is nondegenerate, then every complete norm on T making the triple product continuous is equivalent to the restriction to T of an algebra norm on A.

On annihilators in Jordan algebras.

Antonio Fernández López (1992)

Publicacions Matemàtiques

Similarity:

In this paper we prove that a nondegenerate Jordan algebra satisfying the descending chain condition on the principal inner ideals, also satisfies the ascending chain condition on the annihilators of the principal inner ideals. We also study annihilators in Jordan algebras without nilpotent elements and in JB-algebras.

Jordan polynomials can be analytically recognized

M. Cabrera Garcia, A. Moreno Galindo, A. Rodríguez Palacios, E. Zel'manov (1996)

Studia Mathematica

Similarity:

We prove that there exists a real or complex central simple associative algebra M with minimal one-sided ideals such that, for every non-Jordan associative polynomial p, a Jordan-algebra norm can be given on M in such a way that the action of p on M becomes discontinuous.

Lie triple ideals and Lie triple epimorphisms on Jordan and Jordan-Banach algebras

M. Brešar, M. Cabrera, M. Fošner, A. R. Villena (2005)

Studia Mathematica

Similarity:

A linear subspace M of a Jordan algebra J is said to be a Lie triple ideal of J if [M,J,J] ⊆ M, where [·,·,·] denotes the associator. We show that every Lie triple ideal M of a nondegenerate Jordan algebra J is either contained in the center of J or contains the nonzero Lie triple ideal [U,J,J], where U is the ideal of J generated by [M,M,M]. Let H be a Jordan algebra, let J be a prime nondegenerate Jordan algebra with extended centroid C and unital central closure...