Displaying similar documents to “Analytic properties of the spectrum in Banach Jordan Systems.”

Distinguishing Jordan polynomials by means of a single Jordan-algebra norm

A. Moreno Galindo (1997)

Studia Mathematica

Similarity:

For = ℝ or ℂ we exhibit a Jordan-algebra norm ⎮·⎮ on the simple associative algebra M ( ) with the property that Jordan polynomials over are precisely those associative polynomials over which act ⎮·⎮-continuously on M ( ) . This analytic determination of Jordan polynomials improves the one recently obtained in [5].

The triple-norm extension problem: the nondegenerate complete case.

A. Moreno Galindo (1999)

Studia Mathematica

Similarity:

We prove that, if A is an associative algebra with two commuting involutions τ and π, if A is a τ-π-tight envelope of the Jordan Triple System T:=H(A,τ) ∩ S(A,π), and if T is nondegenerate, then every complete norm on T making the triple product continuous is equivalent to the restriction to T of an algebra norm on A.

Derivations on Jordan-Banach algebras

A. Villena (1996)

Studia Mathematica

Similarity:

We establish that all derivations on a semisimple Jordan-Banach algebra are automatically continuous. By showing that "almost all" primitive ideals in the algebra are invariant under a given derivation, the general case is reduced to that of primitive Jordan-Banach algebras.