Ample vector bundles with zero loci having a bielliptic curve section.
Antonio Lanteri, Hidetoshi Maeda (2003)
Collectanea Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Antonio Lanteri, Hidetoshi Maeda (2003)
Collectanea Mathematica
Similarity:
Roberto Paoletti (1995)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Similarity:
A notion of positivity, called Seshadri ampleness, is introduced for a smooth curve in a polarized smooth projective -fold , whose motivation stems from some recent results concerning the gonality of space curves and the behaviour of stable bundles on under restriction to . This condition is stronger than the normality of the normal bundle and more general than being defined by a regular section of an ample rank- vector bundle. We then explore some of the properties of Seshadri-ample...
Edoardo Ballico, Marina Bertolini, Cristina Turrini (1997)
Collectanea Mathematica
Similarity:
Some inequalities between the class and the degree of a smooth complex projective manifold are given. Application to the case of low sectional genus are supplied.
Del Centina, A., Gimigliano, A. (2001)
Advances in Geometry
Similarity:
E. Ballico (1993)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Edoardo Ballico (2002)
Collectanea Mathematica
Similarity:
Let X be a smooth connected projective curve of genus g defined over R. Here we give bounds for the real gonality of X in terms of the complex gonality of X.
M. C. Beltrametti, A. J. Sommese (1995)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Lucian Bădescu, Mauro Beltrametti (2013)
Open Mathematics
Similarity:
Let Y be a submanifold of dimension y of a polarized complex manifold (X, A) of dimension k ≥ 2, with 1 ≤ y ≤ k−1. We define and study two positivity conditions on Y in (X, A), called Seshadri A-bigness and (a stronger one) Seshadri A-ampleness. In this way we get a natural generalization of the theory initiated by Paoletti in [Paoletti R., Seshadri positive curves in a smooth projective 3-fold, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 1996, 6(4),...