Positive solutions of some coercive-anticoercive elliptic systems
Giovanni Mancini, Enzo Mitidieri (1986-1987)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Giovanni Mancini, Enzo Mitidieri (1986-1987)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity:
Abdelaziz Ahammou (2001)
Publicacions Matemàtiques
Similarity:
The main goal in this paper is to prove the existence of radial positive solutions of the quasilinear elliptic system ⎧ -Δpu = f(x,u,v) in Ω, ⎨ -Δqv = g(x,u,v) in Ω, ⎩ u = v = 0 on ∂Ω, where Ω is a ball in RN and f, g are positive continuous functions satisfying f(x, 0, 0) = g(x, 0, 0) = 0 and some growth conditions which correspond, roughly...
Bouchaib Guerch, Laurent Véron (1991)
Revista Matemática Iberoamericana
Similarity:
We study the local behaviour of solutions of the following type of equation, -Δu - V(x)u + g(u) = 0 when V is singular at some points and g is a non-decreasing function. Emphasis is put on the case when V(x) = c|x|-2 and g has a power-like growth.
L. C. Evans, Pierre-Louis Lions (1981)
Annales de l'institut Fourier
Similarity:
We prove the existence of classical solutions to certain fully non-linear second order elliptic equations with large zeroth order coefficient. The principal tool is an estimate asserting that the -norm of the solution cannot lie in a certain interval of the positive real axis.
Robert Dalmasso (1993)
Revista Matemática de la Universidad Complutense de Madrid
Similarity:
Jacques Giacomoni (2003)
RACSAM
Similarity:
Marius Ghergu, Vicentiu Radulescu (2003)
RACSAM
Similarity:
Estudiamos la existencia de soluciones del sistema elíptico no lineal Δu + |∇u| = p(|x|)f(v), Δv + |∇v| = q(|x|)g(u) en Ω que explotan en el borde. Aquí Ω es un dominio acotado de R o el espacio total. Las nolinealidades f y g son funciones continuas positivas mientras que los potenciales p y q son funciones continuas que satisfacen apropiadas condiciones de crecimiento en el infinito. Demostramos que las soluciones explosivas en el borde dejan de existir si f y g son sublineales. Esto...
Marie Françoise Bidaut-Véron, Laurent Vivier (2000)
Revista Matemática Iberoamericana
Similarity:
We study the boundary behaviour of the nonnegative solutions of the semilinear elliptic equation in a bounded regular domain Ω of RN (N ≥ 2), ⎧ Δu + uq = 0, in Ω ⎨ ⎩ u = μ, on ∂Ω where 1 < q < (N + 1)/(N - 1) and μ is a Radon measure on ∂Ω. We give a priori estimates and existence results. The lie on the study of superharmonic functions in some weighted...