The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Endpoint estimates and weighted norm inequalities for commutators of fractional integrals.”

Sharp L p -weighted Sobolev inequalities

Carlos Pérez (1995)

Annales de l'institut Fourier

Similarity:

We prove sharp weighted inequalities of the form R n | f ( x ) | p v ( x ) d x C R n | q ( D ) ( f ) ( x ) | p N ( v ) ( x ) d x where q ( D ) is a differential operator and N is a combination of maximal type operator related to q ( D ) and to p .

Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator

S. Bloom, R. Kerman (1994)

Studia Mathematica

Similarity:

Necessary and sufficient conditions are given for the Hardy-Littlewood maximal operator to be bounded on a weighted Orlicz space when the complementary Young function satisfies Δ 2 . Such a growth condition is shown to be necessary for any weighted integral inequality to occur. Weak-type conditions are also investigated.

On the two-weight problem for singular integral operators

David Cruz-Uribe, Carlos Pérez (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We give A p type conditions which are sufficient for two-weight, strong ( p , p ) inequalities for Calderón-Zygmund operators, commutators, and the Littlewood-Paley square function g λ * . Our results extend earlier work on weak ( p , p ) inequalities in [13].

Weighted endpoint estimates for commutators of fractional integrals

David Cruz-Uribe, Alberto Fiorenza (2007)

Czechoslovak Mathematical Journal

Similarity:

Given α , 0 < α < n , and b B M O , we give sufficient conditions on weights for the commutator of the fractional integral operator, [ b , I α ] , to satisfy weighted endpoint inequalities on n and on bounded domains. These results extend our earlier work [3], where we considered unweighted inequalities on n .