Displaying similar documents to “Decomposition and Moser's lemma.”

Superposition of imbeddings and Fefferman's inequality

Miroslav Krbec, Thomas Schott (1999)

Bollettino dell'Unione Matematica Italiana

Similarity:

In questo lavoro si studiano condizioni sufficienti sulla funzione peso V , espresse in termini di integrabilità, per la validità della disuguaglianza B u 2 x V x d x 1 2 c B u x 2 d x 1 2 , dove B denota una sfera in R N . Usando una tecnica di decomposizione di immersioni si dimostrano condizioni sufficienti in termini di appartenenza a spazi di Lebesgue, Lorentz-Orlicz e/o di tipo debole. Come applicazioni vengono fornite condizioni sufficienti per la proprietà forte di prolungamento unico per Δ u V u nelle dimensioni 2 e 3. ...

Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces

Robert Černý (2012)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let n 2 and Ω n be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space W 0 L Φ ( Ω ) , where the Young function Φ behaves like t n log α ( t ) , α < n - 1 , for t large, into the Zygmund space Z 0 n - 1 - α n ( Ω ) . We also study the same problem for the embedding of the generalized Lorentz-Sobolev space W 0 m L n m , q log α L ( Ω ) , m < n , q ( 1 , ] , α < 1 q ' , embedded into the Zygmund space Z 0 1 q ' - α ( Ω ) .

Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities

Robert Černý (2012)

Open Mathematics

Similarity:

Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate...