### Almost triangular matrices over Dedekind domains.

Demeyer, Frank, Kakakhail, Haniya (1999)

International Journal of Mathematics and Mathematical Sciences

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Demeyer, Frank, Kakakhail, Haniya (1999)

International Journal of Mathematics and Mathematical Sciences

Similarity:

Rafael Bru, Ljiljana Cvetković, Vladimir Kostić, Francisco Pedroche (2010)

Open Mathematics

Similarity:

This paper deals with some properties of α1-matrices and α2-matrices which are subclasses of nonsingular H-matrices. In particular, new characterizations of these two subclasses are given, and then used for proving algebraic properties related to subdirect sums and Hadamard products.

R. Puystjens, J. van Geel (1985)

Acta Universitatis Carolinae. Mathematica et Physica

Similarity:

Miroslav Fiedler, Frank Hall (2013)

Open Mathematics

Similarity:

This paper extends some properties of the generalized complementary basic matrices, in particular, in a combinatorial direction. These include inheritance (such as for Alternating Sign Matrices), spectral, and sign pattern matrix (including sign nonsingularity) properties.

Lee, Moon Ho, Feng, Gui-Liang, Chen, Zhu (2008)

Mathematical Problems in Engineering

Similarity:

Luis Verde-Star (2015)

Special Matrices

Similarity:

We use elementary triangular matrices to obtain some factorization, multiplication, and inversion properties of triangular matrices. We also obtain explicit expressions for the inverses of strict k-Hessenberg matrices and banded matrices. Our results can be extended to the cases of block triangular and block Hessenberg matrices. An n × n lower triangular matrix is called elementary if it is of the form I + C, where I is the identity matrix and C is lower triangular and has all of its...

Mika Mattila, Pentti Haukkanen (2016)

Special Matrices

Similarity:

Let T = {z1, z2, . . . , zn} be a finite multiset of real numbers, where z1 ≤ z2 ≤ · · · ≤ zn. The purpose of this article is to study the different properties of MIN and MAX matrices of the set T with min(zi , zj) and max(zi , zj) as their ij entries, respectively.We are going to do this by interpreting these matrices as so-called meet and join matrices and by applying some known results for meet and join matrices. Once the theorems are found with the aid of advanced methods, we also...

Thomas Ernst (2015)

Special Matrices

Similarity:

In this second article on q-Pascal matrices, we show how the previous factorizations by the summation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows [...] We also find two different matrix products for [...]