Displaying similar documents to “Stable finite element methods for the Stokes problem.”

Stability of a finite element method for 3D exterior stationary Navier-Stokes flows

Paul Deuring (2007)

Applications of Mathematics

Similarity:

We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial...

More pressure in the finite element discretization of the Stokes problem

Christine Bernardi, Frédéric Hecht (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

For the Stokes problem in a two- or three-dimensional bounded domain, we propose a new mixed finite element discretization which relies on a nonconforming approximation of the velocity and a more accurate approximation of the pressure. We prove that the velocity and pressure discrete spaces are compatible, in the sense that they satisfy an inf-sup condition of Babuška and Brezzi type, and we derive some error estimates.

A stabilized finite element scheme for the Navier-Stokes equations on quadrilateral anisotropic meshes

Malte Braack (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

It is well known that the classical local projection method as well as residual-based stabilization techniques, as for instance streamline upwind Petrov-Galerkin (SUPG), are optimal on isotropic meshes. Here we extend the local projection stabilization for the Navier-Stokes system to anisotropic quadrilateral meshes in two spatial dimensions. We describe the new method and prove an error estimate. This method leads on anisotropic meshes to qualitatively better convergence behavior...

A non-overlapping domain decomposition method for continuous-pressure mixed finite element approximations of the Stokes problem

Hani Benhassine, Abderrahmane Bendali (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This study is mainly dedicated to the development and analysis of non-overlapping domain decomposition methods for solving continuous-pressure finite element formulations of the Stokes problem. These methods have the following special features. By keeping the equations and unknowns unchanged at the cross points, that is, points shared by more than two subdomains, one can interpret them as iterative solvers of the actual discrete problem directly issued from the finite element scheme....

Numerical analysis of the Navier-Stokes equations

Rolf Rannacher (1993)

Applications of Mathematics

Similarity:

This paper discusses some conceptional questions of the numerical simulation of viscous incompressible flow which are related to the presence of boundaries.