Displaying similar documents to “A characterization of regular saddle surfaces in the hyperbolic and spherical three-space.”

Helicoidal surfaces in Minkowski space with constant mean curvature and constant Gauss curvature

Rafael López, Esma Demir (2014)

Open Mathematics

Similarity:

We classify all helicoidal non-degenerate surfaces in Minkowski space with constant mean curvature whose generating curve is a the graph of a polynomial or a Lorentzian circle. In the first case, we prove that the degree of the polynomial is 0 or 1 and that the surface is ruled. If the generating curve is a Lorentzian circle, we prove that the only possibility is that the axis is spacelike and the center of the circle lies on the axis.

Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes Application to the Minkowski problem in the Minkowski space

Thierry Barbot, François Béguin, Abdelghani Zeghib (2011)

Annales de l’institut Fourier

Similarity:

We study the existence of surfaces with constant or prescribed Gauss curvature in certain Lorentzian spacetimes. We prove in particular that every (non-elementary) 3-dimensional maximal globally hyperbolic spatially compact spacetime with constant non-negative curvature is foliated by compact spacelike surfaces with constant Gauss curvature. In the constant negative curvature case, such a foliation exists outside the convex core. The existence of these foliations, together with a theorem...

Invariants and Bonnet-type theorem for surfaces in ℝ4

Georgi Ganchev, Velichka Milousheva (2010)

Open Mathematics

Similarity:

In the tangent plane at any point of a surface in the four-dimensional Euclidean space we consider an invariant linear map ofWeingarten-type and find a geometrically determined moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes...