Displaying similar documents to “Calculating canonical distinguished involutions in the affine Weyl groups.”

On spherical nilpotent orbits and beyond

Dmitri I. Panyushev (1999)

Annales de l'institut Fourier

Similarity:

We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s θ -groups. This yields a description...

Dual pairs and Kostant-Sekiguchi correspondence. II. Classification of nilpotent elements

Andrzej Daszkiewicz, Witold Kraśkiewicz, Tomasz Przebinda (2005)

Open Mathematics

Similarity:

We classify the homogeneous nilpotent orbits in certain Lie color algebras and specialize the results to the setting of a real reductive dual pair. For any member of a dual pair, we prove the bijectivity of the two Kostant-Sekiguchi maps by straightforward argument. For a dual pair we determine the correspondence of the real orbits, the correspondence of the complex orbits and explain how these two relations behave under the Kostant-Sekiguchi maps. In particular we prove that for a dual...