The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Series of nilpotent orbits.”

On spherical nilpotent orbits and beyond

Dmitri I. Panyushev (1999)

Annales de l'institut Fourier

Similarity:

We continue investigations that are concerned with the complexity of nilpotent orbits in semisimple Lie algebras. We give a characterization of the spherical nilpotent orbits in terms of minimal Levi subalgebras intersecting them. This provides a kind of canonical form for such orbits. A description minimal non-spherical orbits in all simple Lie algebras is obtained. The theory developed for the adjoint representation is then extended to Vinberg’s θ -groups. This yields a description...

Dual pairs and Kostant-Sekiguchi correspondence. II. Classification of nilpotent elements

Andrzej Daszkiewicz, Witold Kraśkiewicz, Tomasz Przebinda (2005)

Open Mathematics

Similarity:

We classify the homogeneous nilpotent orbits in certain Lie color algebras and specialize the results to the setting of a real reductive dual pair. For any member of a dual pair, we prove the bijectivity of the two Kostant-Sekiguchi maps by straightforward argument. For a dual pair we determine the correspondence of the real orbits, the correspondence of the complex orbits and explain how these two relations behave under the Kostant-Sekiguchi maps. In particular we prove that for a dual...

The closure diagram for nilpotent orbits of the split real form of E8

Dragomir Đoković (2003)

Open Mathematics

Similarity:

Let 𝒪 1 and 𝒪 2 be adjoint nilpotent orbits in a real semisimple Lie algebra. Write 𝒪 1 𝒪 2 if 𝒪 2 is contained in the closure of 𝒪 1 . This defines a partial order on the set of such orbits, known as the closure ordering. We determine this order for the split real form of the simple complex Lie algebra, E 8. The proof is based on the fact that the Kostant-Sekiguchi correspondence preserves the closure ordering. We also present a comprehensive list of simple representatives of these orbits, and...