The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Constructing canonical bases of quantized enveloping algebras.”

The Harish-Chandra homomorphism for a quantized classical hermitian symmetric pair

Welleda Baldoni, Pierluigi Möseneder Frajria (1999)

Annales de l'institut Fourier

Similarity:

Let G / K a noncompact symmetric space with Iwasawa decomposition K A N . The Harish-Chandra homomorphism is an explicit homomorphism between the algebra of invariant differential operators on G / K and the algebra of polynomials on A that are invariant under the Weyl group action of the pair ( G , A ) . The main result of this paper is a generalization to the quantum setting of the Harish-Chandra homomorphism in the case of G / K being an hermitian (classical) symmetric space

Composition-diamond lemma for modules

Yuqun Chen, Yongshan Chen, Chanyan Zhong (2010)

Czechoslovak Mathematical Journal

Similarity:

We investigate the relationship between the Gröbner-Shirshov bases in free associative algebras, free left modules and “double-free” left modules (that is, free modules over a free algebra). We first give Chibrikov’s Composition-Diamond lemma for modules and then we show that Kang-Lee’s Composition-Diamond lemma follows from it. We give the Gröbner-Shirshov bases for the following modules: the highest weight module over a Lie algebra s l 2 , the Verma module over a Kac-Moody algebra, the...