The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Eisenstein Matrix and Existence of Cusp Forms in Rank One Symmetric Spaces.”

The Bruhat rank of a binary symmetric staircase pattern

Zhibin Du, Carlos M. da Fonseca (2016)

Open Mathematics

Similarity:

In this work we show that the Bruhat rank of a symmetric (0,1)-matrix of order n with a staircase pattern, total support, and containing In, is at most 2. Several other related questions are also discussed. Some illustrative examples are presented.

Possible numbers ofx’s in an {x,y}-matrix with a given rank

Chao Ma (2017)

Open Mathematics

Similarity:

Let x, y be two distinct real numbers. An {x, y}-matrix is a matrix whose entries are either x or y. We determine the possible numbers of x’s in an {x, y}-matrix with a given rank. Our proof is constructive.

Moore-Penrose inverse of a hollow symmetric matrix and a predistance matrix

Hiroshi Kurata, Ravindra B. Bapat (2016)

Special Matrices

Similarity:

By a hollow symmetric matrix we mean a symmetric matrix with zero diagonal elements. The notion contains those of predistance matrix and Euclidean distance matrix as its special cases. By a centered symmetric matrix we mean a symmetric matrix with zero row (and hence column) sums. There is a one-toone correspondence between the classes of hollow symmetric matrices and centered symmetric matrices, and thus with any hollow symmetric matrix D we may associate a centered symmetric matrix...