On inequalities of Hardy-Sobolev type.
Balinsky, A., Evans, W.D., Hundertmark, D, Lewis, R.T. (2008)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
Balinsky, A., Evans, W.D., Hundertmark, D, Lewis, R.T. (2008)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
Tonia Ricciardi, Takashi Suzuki (2014)
Journal of the European Mathematical Society
Similarity:
Klaus Gero Kalb (1984)
Mathematische Annalen
Similarity:
Teresa Radice (2014)
Studia Mathematica
Similarity:
In this short note we present new integral formulas for the Hessian determinant. We use them for new definitions of Hessian under minimal regularity assumptions. The Hessian becomes a continuous linear functional on a Sobolev space.
Yong-Kum Cho, Joonil Kim (2006)
Studia Mathematica
Similarity:
As a natural extension of Sobolev spaces, we consider Hardy-Sobolev spaces and establish an atomic decomposition theorem, analogous to the atomic decomposition characterization of Hardy spaces. As an application, we deduce several embedding results for Hardy-Sobolev spaces.
Kutateladze, S.S. (2001)
Vladikavkazskiĭ Matematicheskiĭ Zhurnal
Similarity:
Stathis Filippas, Achilles Tertikas, Jesper Tidblom (2009)
Journal of the European Mathematical Society
Similarity:
Andrea Cianchi, Nicola Fusco, F. Maggi, A. Pratelli (2009)
Journal of the European Mathematical Society
Similarity:
Petteri Harjulehto, Peter Hästö, Mika Koskenoja, Susanna Varonen (2005)
Banach Center Publications
Similarity:
In a recent article the authors showed that it is possible to define a Sobolev capacity in variable exponent Sobolev space. However, this set function was shown to be a Choquet capacity only under certain assumptions on the variable exponent. In this article we relax these assumptions.
V. M. Tikhomirov (1989)
Banach Center Publications
Similarity:
Ershov, Yu.L., Kutateladze, S.S. (2009)
Sibirskij Matematicheskij Zhurnal
Similarity:
Yong-Kum Cho (2005)
Colloquium Mathematicae
Similarity:
We prove Strichartz's conjecture regarding a characterization of Hardy-Sobolev spaces.
Crăciunaş, Petru Teodor (1996)
General Mathematics
Similarity:
Andrea Cianchi, Luboš Pick, Lenka Slavíková (2014)
Banach Center Publications
Similarity:
We survey results from the paper [CPS] in which we developed a new sharp iteration method and applied it to show that the optimal Sobolev embeddings of any order can be derived from isoperimetric inequalities. We prove thereby that the well-known link between first-order Sobolev embeddings and isoperimetric inequalities translates to embeddings of any order, a fact that had not been known before. We show a general reduction principle that reduces Sobolev type inequalities of any order...
Igor Leite Freire (2021)
Communications in Mathematics
Similarity:
We present an overview of some contributions of the author regarding Camassa--Holm type equations. We show that an equation unifying both Camassa--Holm and Novikov equations can be derived using the invariance under certain suitable scaling, conservation of the Sobolev norm and existence of peakon solutions. Qualitative analysis of the two-peakon dynamics is given.
Ivan Gentil (2008)
Annales de la faculté des sciences de Toulouse Mathématiques
Similarity:
We develop in this paper an improvement of the method given by S. Bobkov and M. Ledoux in [BL00]. Using the Prékopa-Leindler inequality, we prove a modified logarithmic Sobolev inequality adapted for all measures on , with a strictly convex and super-linear potential. This inequality implies modified logarithmic Sobolev inequality, developed in [GGM05, GGM07], for all uniformly strictly convex potential as well as the Euclidean logarithmic Sobolev inequality.
Toni Heikkinen, Pekka Koskela, Heli Tuominen (2007)
Studia Mathematica
Similarity:
We define a Sobolev space by means of a generalized Poincaré inequality and relate it to a corresponding space based on upper gradients.
Matteo Bonforte, Gabriele Grillo (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We investigate the connection between certain logarithmic Sobolev inequalities and generalizations of Gagliardo-Nirenberg inequalities. A similar connection holds between reverse logarithmic Sobolev inequalities and a new class of reverse Gagliardo-Nirenberg inequalities.
A. Pełczyński, K. Senator (1986)
Studia Mathematica
Similarity:
C. Morpurgo (1996)
Geometric and functional analysis
Similarity: