О равенстве -емкости и -модуля
В.А. Шлык (1993)
Sibirskij matematiceskij zurnal
Similarity:
В.А. Шлык (1993)
Sibirskij matematiceskij zurnal
Similarity:
Е.Т. Ивлев (1967)
Sibirskij matematiceskij zurnal
Similarity:
Jiakuan Lu, Wei Meng, Alexander Moretó, Kaisun Wu (2021)
Czechoslovak Mathematical Journal
Similarity:
We show that if the average number of (nonnormal) Sylow subgroups of a finite group is less than then is solvable or . This generalizes an earlier result by the third author.
В.И. Зенков (1996)
Sibirskij matematiceskij zurnal
Similarity:
А.Л. Гаркави (1997)
Sibirskij matematiceskij zurnal
Similarity:
А.А. Лебедев (1997)
Sibirskij matematiceskij zurnal
Similarity:
Jiangtao Shi, Na Li (2021)
Czechoslovak Mathematical Journal
Similarity:
Let be a finite group. We prove that if every self-centralizing subgroup of is nilpotent or subnormal or a TI-subgroup, then every subgroup of is nilpotent or subnormal. Moreover, has either a normal Sylow -subgroup or a normal -complement for each prime divisor of .
А.Е. Залесский, И.Д. Супруненко (1990)
Sibirskij matematiceskij zurnal
Similarity:
Р. Гончигдорж (1982)
Sibirskij matematiceskij zurnal
Similarity:
А.Р. Миротин (1998)
Sibirskij matematiceskij zurnal
Similarity:
А.П. Ильиных (1995)
Sibirskij matematiceskij zurnal
Similarity:
Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri (2022)
Czechoslovak Mathematical Journal
Similarity:
We prove that if the average number of Sylow subgroups of a finite group is less than and not equal to , then is solvable or . In particular, if the average number of Sylow subgroups of a finite group is , then , where is the largest normal solvable subgroup of . This generalizes an earlier result by Moretó et al.
М.П. Овчинцев (1996)
Sibirskij matematiceskij zurnal
Similarity:
В.Н. Потапов (1997)
Sibirskij matematiceskij zurnal
Similarity:
Ruifang Chen, Xianhe Zhao (2020)
Czechoslovak Mathematical Journal
Similarity:
Let be a group. A subgroup of is called a TI-subgroup if or for every and is called a QTI-subgroup if for any . In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.