О равенстве -емкости и -модуля
В.А. Шлык (1993)
Sibirskij matematiceskij zurnal
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
В.А. Шлык (1993)
Sibirskij matematiceskij zurnal
Similarity:
Е.Т. Ивлев (1967)
Sibirskij matematiceskij zurnal
Similarity:
Jiakuan Lu, Wei Meng, Alexander Moretó, Kaisun Wu (2021)
Czechoslovak Mathematical Journal
Similarity:
We show that if the average number of (nonnormal) Sylow subgroups of a finite group is less than then is solvable or . This generalizes an earlier result by the third author.
В.И. Зенков (1996)
Sibirskij matematiceskij zurnal
Similarity:
А.Л. Гаркави (1997)
Sibirskij matematiceskij zurnal
Similarity:
А.А. Лебедев (1997)
Sibirskij matematiceskij zurnal
Similarity:
Jiangtao Shi, Na Li (2021)
Czechoslovak Mathematical Journal
Similarity:
Let be a finite group. We prove that if every self-centralizing subgroup of is nilpotent or subnormal or a TI-subgroup, then every subgroup of is nilpotent or subnormal. Moreover, has either a normal Sylow -subgroup or a normal -complement for each prime divisor of .
А.Е. Залесский, И.Д. Супруненко (1990)
Sibirskij matematiceskij zurnal
Similarity:
Р. Гончигдорж (1982)
Sibirskij matematiceskij zurnal
Similarity:
А.Р. Миротин (1998)
Sibirskij matematiceskij zurnal
Similarity:
А.П. Ильиных (1995)
Sibirskij matematiceskij zurnal
Similarity:
Alireza Khalili Asboei, Seyed Sadegh Salehi Amiri (2022)
Czechoslovak Mathematical Journal
Similarity:
We prove that if the average number of Sylow subgroups of a finite group is less than and not equal to , then is solvable or . In particular, if the average number of Sylow subgroups of a finite group is , then , where is the largest normal solvable subgroup of . This generalizes an earlier result by Moretó et al.
М.П. Овчинцев (1996)
Sibirskij matematiceskij zurnal
Similarity:
В.Н. Потапов (1997)
Sibirskij matematiceskij zurnal
Similarity:
Ruifang Chen, Xianhe Zhao (2020)
Czechoslovak Mathematical Journal
Similarity:
Let be a group. A subgroup of is called a TI-subgroup if or for every and is called a QTI-subgroup if for any . In this paper, a finite group in which every nonabelian maximal is a TI-subgroup (QTI-subgroup) is characterized.