Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence
R. Farwig, H. Kozono, H. Sohr (2011)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
R. Farwig, H. Kozono, H. Sohr (2011)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Aycil Cesmelioglu, Vivette Girault, Béatrice Rivière (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.
Joanna Rencławowicz, Wojciech M. Zajączkowski (2006)
Applicationes Mathematicae
Similarity:
We prove the existence of weak solutions to the Navier-Stokes equations describing the motion of a fluid in a Y-shaped domain.
Beirão da Veiga, H. (1997)
Portugaliae Mathematica
Similarity:
K. K. Golovkin, A. Krzywicki (1967)
Colloquium Mathematicae
Similarity:
Patrick Penel, Milan Pokorný (2004)
Applications of Mathematics
Similarity:
We study the nonstationary Navier-Stokes equations in the entire three-dimensional space and give some criteria on certain components of gradient of the velocity which ensure its global-in-time smoothness.
Elva Ortega-Torres, Marko Rojas-Medar (2009)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Skalák, Zdeněk, Kučera, Petr (2001)
Commentationes Mathematicae Universitatis Carolinae
Similarity: