Global weak solutions of the Navier-Stokes equations with nonhomogeneous boundary data and divergence
R. Farwig, H. Kozono, H. Sohr (2011)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
R. Farwig, H. Kozono, H. Sohr (2011)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Aycil Cesmelioglu, Vivette Girault, Béatrice Rivière (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
A weak solution of the coupling of time-dependent incompressible Navier–Stokes equations with Darcy equations is defined. The interface conditions include the Beavers–Joseph–Saffman condition. Existence and uniqueness of the weak solution are obtained by a constructive approach. The analysis is valid for weak regularity interfaces.
Joanna Rencławowicz, Wojciech M. Zajączkowski (2006)
Applicationes Mathematicae
Similarity:
We prove the existence of weak solutions to the Navier-Stokes equations describing the motion of a fluid in a Y-shaped domain.
Beirão da Veiga, H. (1997)
Portugaliae Mathematica
Similarity:
K. K. Golovkin, A. Krzywicki (1967)
Colloquium Mathematicae
Similarity:
Patrick Penel, Milan Pokorný (2004)
Applications of Mathematics
Similarity:
We study the nonstationary Navier-Stokes equations in the entire three-dimensional space and give some criteria on certain components of gradient of the velocity which ensure its global-in-time smoothness.
Elva Ortega-Torres, Marko Rojas-Medar (2009)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Skalák, Zdeněk, Kučera, Petr (2001)
Commentationes Mathematicae Universitatis Carolinae
Similarity: