The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “An axiomatic treatment of pairs of elliptic differential equations”

A maximal regular boundary for solutions of elliptic differential equations

Peter Loeb, Bertram Walsh (1968)

Annales de l'institut Fourier

Similarity:

Soit 𝒜 une classe harmonique de Brelot, définie sur W . Il est donné un critère de régularité en termes de barrières, pour les points d’une frontière idéale. Soit un sous-treillis banachique de ℬ𝒜 W . Si 𝒜 est hyperbolique, la frontière idéale compactifiante déterminée par contient une “frontière harmonique” Γ qui satisfait le critère de régularité et 𝒞 R ( Γ ) . Entre autres applications, on a la théorie des frontières de Wiener et Royden et des comparaisons de classes harmoniques.

Topological countability in Brelot potential theory

Thomas E. Armstrong (1974)

Annales de l'institut Fourier

Similarity:

Let U be a domain of type H in a Brelot potential theory. A compact K in U is a G δ in U iff U - K has at most countably many components. If F is a relatively closed locally polar subset of U , any G δ in F is a G δ in U . If V is a domain in U , all Borel subsets of V U are Baire even if V U is not metrizable. The known results concerning equivalences between weak thinness, thinness, and strong thinness of a set A at a point x A are extended from the case where { x } is a G δ to the cases in which A meets only...

Regularity of certain sets in ℂⁿ

Nguyen Quang Dieu (2003)

Annales Polonici Mathematici

Similarity:

A subset K of ℂⁿ is said to be regular in the sense of pluripotential theory if the pluricomplex Green function (or Siciak extremal function) V K is continuous in ℂⁿ. We show that K is regular if the intersections of K with sufficiently many complex lines are regular (as subsets of ℂ). A complete characterization of regularity for Reinhardt sets is also given.

Uniform bounds for quotients of Green functions on C 1 , 1 -domains

H. Hueber, M. Sieveking (1982)

Annales de l'institut Fourier

Similarity:

Let Δ u = Σ i 2 x i 2 , L u = Σ i , j a i j 2 x i x j u + Σ i b i x i u + c u be elliptic operators with Hölder continuous coefficients on a bounded domain Ω R n of class C 1 , 1 . There is a constant c > 0 depending only on the Hölder norms of the coefficients of L and its constant of ellipticity such that c - 1 G Δ Ω G L Ω c G Δ Ω on Ω × Ω , where γ Δ Ω (resp. G L Ω ) are the Green functions of Δ (resp. L ) on Ω .

Axiomatic theory of harmonic functions. Balayage

Nicu Boboc, Corneliu Constantinescu, A. Cornea (1965)

Annales de l'institut Fourier

Similarity:

Dans une axiomatique des fonctions harmoniques un peu plus générale que celle de H. Bauer, on démontre les relations suivantes : R s + t A = R s A + R t A , R s A B + R s A B R s A + R s B , A n A , S n s R s n A n R s A , A , B , A n , (resp. s , t , s n ) sont des ensembles (resp. fonctions hyperharmoniques non-négatives) arbitraires. Les mêmes relations sont valables pour R ^ . On démontre aussi que la relation * s d μ A = * R ^ s A d μ a lieu si l’espace de base a une base dénombrable ou si l’axiome D de M. Brelot est satisfait,...

Some properties of the balayage of measures on a harmonic space

Corneliu Constantinescu (1967)

Annales de l'institut Fourier

Similarity:

On démontre plusieurs théorèmes concernant le balayage des mesures sur un espace harmonique satisfaisant aux axiomes de Bauer, parmi lesquels nous indiquons les suivants : a) la balayée μ A B d’une mesure μ sur la réunion μ A μ B (dans l’espace de Riesz de mesure) ; b) ϵ x A ϵ x caractérise l’effilement de A en x  ; c) il existe un potentiel fini et continue p tel que pour tout ensemble A { x | R ^ p ( x ) < p ( x ) } est exactement l’ensemble des points où A est effilé ; d) μ A est portée par la fermeture fine de A  ; e) si A et B sont...