Uniform bounds for quotients of Green functions on C 1 , 1 -domains

H. Hueber; M. Sieveking

Annales de l'institut Fourier (1982)

  • Volume: 32, Issue: 1, page 105-117
  • ISSN: 0373-0956

Abstract

top
Let Δ u = Σ i 2 x i 2 , L u = Σ i , j a i j 2 x i x j u + Σ i b i x i u + c u be elliptic operators with Hölder continuous coefficients on a bounded domain Ω R n of class C 1 , 1 . There is a constant c > 0 depending only on the Hölder norms of the coefficients of L and its constant of ellipticity such that c - 1 G Δ Ω G L Ω c G Δ Ω on Ω × Ω , where γ Δ Ω (resp. G L Ω ) are the Green functions of Δ (resp. L ) on Ω .

How to cite

top

Hueber, H., and Sieveking, M.. "Uniform bounds for quotients of Green functions on $C^{1,1}$-domains." Annales de l'institut Fourier 32.1 (1982): 105-117. <http://eudml.org/doc/74520>.

@article{Hueber1982,
abstract = {Let $\Delta u = \Sigma _i \{\partial ^2 \over \partial ^2_\{x_i\}\}$, $Lu = \Sigma _\{i,j\} a_\{ij\} \{\partial ^2 \over \partial x_i \partial x_j\} u + \Sigma _i b_i \{\partial \over \partial x_i\} u + cu$ be elliptic operators with Hölder continuous coefficients on a bounded domain $\Omega \subset \{\bf R\}^n$ of class $C^\{1,1\}$. There is a constant $c&gt;0$ depending only on the Hölder norms of the coefficients of $L$ and its constant of ellipticity such that\begin\{\} c^\{-1\}G^\Omega \_\Delta \le G^\Omega \_L \le c G^\Omega \_\Delta \text\{on\} \Omega \times \Omega ,\end\{\}where $\gamma ^\Omega _\Delta $ (resp. $G^\Omega _L$) are the Green functions of $\Delta $ (resp. $L$) on $\Omega $.},
author = {Hueber, H., Sieveking, M.},
journal = {Annales de l'institut Fourier},
keywords = {Green's functions; Hölder continuous coefficients},
language = {eng},
number = {1},
pages = {105-117},
publisher = {Association des Annales de l'Institut Fourier},
title = {Uniform bounds for quotients of Green functions on $C^\{1,1\}$-domains},
url = {http://eudml.org/doc/74520},
volume = {32},
year = {1982},
}

TY - JOUR
AU - Hueber, H.
AU - Sieveking, M.
TI - Uniform bounds for quotients of Green functions on $C^{1,1}$-domains
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 1
SP - 105
EP - 117
AB - Let $\Delta u = \Sigma _i {\partial ^2 \over \partial ^2_{x_i}}$, $Lu = \Sigma _{i,j} a_{ij} {\partial ^2 \over \partial x_i \partial x_j} u + \Sigma _i b_i {\partial \over \partial x_i} u + cu$ be elliptic operators with Hölder continuous coefficients on a bounded domain $\Omega \subset {\bf R}^n$ of class $C^{1,1}$. There is a constant $c&gt;0$ depending only on the Hölder norms of the coefficients of $L$ and its constant of ellipticity such that\begin{} c^{-1}G^\Omega _\Delta \le G^\Omega _L \le c G^\Omega _\Delta \text{on} \Omega \times \Omega ,\end{}where $\gamma ^\Omega _\Delta $ (resp. $G^\Omega _L$) are the Green functions of $\Delta $ (resp. $L$) on $\Omega $.
LA - eng
KW - Green's functions; Hölder continuous coefficients
UR - http://eudml.org/doc/74520
ER -

References

top
  1. [1] A. ANCONA, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Ann. Inst. Fourier, 28, 4 (1978), 169-213. Zbl0377.31001MR80d:31006
  2. [2] A. ANCONA, Principe de Harnack à la frontière et problèmes de frontière de Martin, Lecture Notes in Mathematics, 787 (1980), 9-28. Zbl0439.31003MR82a:31014
  3. [3] N. BOBOC, P. MUSTATA, Espaces harmoniques associés aux opérateurs différentiels linéaires du second ordre de type elliptique, Lecture Notes in Mathematics, 68 (1968). Zbl0167.40301MR39 #3020
  4. [4] C. CONSTANTINESCU, A. CORNEA, Potential theory on harmonic spaces, Berlin-Heidelberg-New York, 1972. Zbl0248.31011MR54 #7817
  5. [5] D. GILBARG, J. SERRIN, On isolated singularities of solutions of second order elliptic differential equations, J. d'Anal. Math., 4 (1954-1956), 309-340. Zbl0071.09701MR18,399a
  6. [6] R.M. HERVE, Recherches axiomatiques sur la théorie des fonctions surhamoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
  7. [7] H. HUEBER, M. SIEVEKING, On the quotients of Green functions (preliminary version), Bielefeld, September 1980 (unpublished). Zbl0535.31004
  8. [8] J. SERRIN, On the Harnack inequality for linear elliptic equations, J. d'Anal. Math., 4 (1956), 292-308. Zbl0070.32302MR18,398f
  9. [9] J.-C. TAYLOR, On the Martin compactification of a bounded Lipschitz domain in a Riemannian manifold, Ann. Inst. Fourier, 28, 2 (1977), 25-52. Zbl0363.31010MR58 #6302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.