Uniform bounds for quotients of Green functions on -domains
Annales de l'institut Fourier (1982)
- Volume: 32, Issue: 1, page 105-117
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHueber, H., and Sieveking, M.. "Uniform bounds for quotients of Green functions on $C^{1,1}$-domains." Annales de l'institut Fourier 32.1 (1982): 105-117. <http://eudml.org/doc/74520>.
@article{Hueber1982,
abstract = {Let $\Delta u = \Sigma _i \{\partial ^2 \over \partial ^2_\{x_i\}\}$, $Lu = \Sigma _\{i,j\} a_\{ij\} \{\partial ^2 \over \partial x_i \partial x_j\} u + \Sigma _i b_i \{\partial \over \partial x_i\} u + cu$ be elliptic operators with Hölder continuous coefficients on a bounded domain $\Omega \subset \{\bf R\}^n$ of class $C^\{1,1\}$. There is a constant $c>0$ depending only on the Hölder norms of the coefficients of $L$ and its constant of ellipticity such that\begin\{\} c^\{-1\}G^\Omega \_\Delta \le G^\Omega \_L \le c G^\Omega \_\Delta \text\{on\} \Omega \times \Omega ,\end\{\}where $\gamma ^\Omega _\Delta $ (resp. $G^\Omega _L$) are the Green functions of $\Delta $ (resp. $L$) on $\Omega $.},
author = {Hueber, H., Sieveking, M.},
journal = {Annales de l'institut Fourier},
keywords = {Green's functions; Hölder continuous coefficients},
language = {eng},
number = {1},
pages = {105-117},
publisher = {Association des Annales de l'Institut Fourier},
title = {Uniform bounds for quotients of Green functions on $C^\{1,1\}$-domains},
url = {http://eudml.org/doc/74520},
volume = {32},
year = {1982},
}
TY - JOUR
AU - Hueber, H.
AU - Sieveking, M.
TI - Uniform bounds for quotients of Green functions on $C^{1,1}$-domains
JO - Annales de l'institut Fourier
PY - 1982
PB - Association des Annales de l'Institut Fourier
VL - 32
IS - 1
SP - 105
EP - 117
AB - Let $\Delta u = \Sigma _i {\partial ^2 \over \partial ^2_{x_i}}$, $Lu = \Sigma _{i,j} a_{ij} {\partial ^2 \over \partial x_i \partial x_j} u + \Sigma _i b_i {\partial \over \partial x_i} u + cu$ be elliptic operators with Hölder continuous coefficients on a bounded domain $\Omega \subset {\bf R}^n$ of class $C^{1,1}$. There is a constant $c>0$ depending only on the Hölder norms of the coefficients of $L$ and its constant of ellipticity such that\begin{} c^{-1}G^\Omega _\Delta \le G^\Omega _L \le c G^\Omega _\Delta \text{on} \Omega \times \Omega ,\end{}where $\gamma ^\Omega _\Delta $ (resp. $G^\Omega _L$) are the Green functions of $\Delta $ (resp. $L$) on $\Omega $.
LA - eng
KW - Green's functions; Hölder continuous coefficients
UR - http://eudml.org/doc/74520
ER -
References
top- [1] A. ANCONA, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine Lipschitzien, Ann. Inst. Fourier, 28, 4 (1978), 169-213. Zbl0377.31001MR80d:31006
- [2] A. ANCONA, Principe de Harnack à la frontière et problèmes de frontière de Martin, Lecture Notes in Mathematics, 787 (1980), 9-28. Zbl0439.31003MR82a:31014
- [3] N. BOBOC, P. MUSTATA, Espaces harmoniques associés aux opérateurs différentiels linéaires du second ordre de type elliptique, Lecture Notes in Mathematics, 68 (1968). Zbl0167.40301MR39 #3020
- [4] C. CONSTANTINESCU, A. CORNEA, Potential theory on harmonic spaces, Berlin-Heidelberg-New York, 1972. Zbl0248.31011MR54 #7817
- [5] D. GILBARG, J. SERRIN, On isolated singularities of solutions of second order elliptic differential equations, J. d'Anal. Math., 4 (1954-1956), 309-340. Zbl0071.09701MR18,399a
- [6] R.M. HERVE, Recherches axiomatiques sur la théorie des fonctions surhamoniques et du potentiel, Ann. Inst. Fourier, 12 (1962), 415-571. Zbl0101.08103MR25 #3186
- [7] H. HUEBER, M. SIEVEKING, On the quotients of Green functions (preliminary version), Bielefeld, September 1980 (unpublished). Zbl0535.31004
- [8] J. SERRIN, On the Harnack inequality for linear elliptic equations, J. d'Anal. Math., 4 (1956), 292-308. Zbl0070.32302MR18,398f
- [9] J.-C. TAYLOR, On the Martin compactification of a bounded Lipschitz domain in a Riemannian manifold, Ann. Inst. Fourier, 28, 2 (1977), 25-52. Zbl0363.31010MR58 #6302
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.