Displaying similar documents to “Uniform approximation of harmonic functions”

The Martin boundaries of equivalent sheaves

John C. Taylor (1970)

Annales de l'institut Fourier

Similarity:

The Martin compactification of X defined by a Brelot sheaf H 1 satisfying proportionality is shown to be the same as for H 2 if the sheaves agree outside a compact set. Minimal points coincide and hence S 1 + and S 2 + are isomorphic topological cones. Nakai’s result on the extension to X of a function harmonic outside a compact set is extended to Bauer’s theory. The connected components of the Martin boundary Δ correspond to the ends of X which are related to direct decomposition of the cone H + . ...

Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents

Fanghua Lin, Tristan Rivière (1999)

Journal of the European Mathematical Society

Similarity:

There is an obvious topological obstruction for a finite energy unimodular harmonic extension of a S 1 -valued function defined on the boundary of a bounded regular domain of R n . When such extensions do not exist, we use the Ginzburg-Landau relaxation procedure. We prove that, up to a subsequence, a sequence of Ginzburg-Landau minimizers, as the coupling parameter tends to infinity, converges to a unimodular harmonic map away from a codimension-2 minimal current minimizing the area within...

Harmonic measures for symmetric stable processes

Jang-Mei Wu (2002)

Studia Mathematica

Similarity:

Let D be an open set in ℝⁿ (n ≥ 2) and ω(·,D) be the harmonic measure on D c with respect to the symmetric α-stable process (0 < α < 2) killed upon leaving D. We study inequalities on volumes or capacities which imply that a set S on ∂D has zero harmonic measure and others which imply that S has positive harmonic measure. In general, it is the relative sizes of the sets S and D c S that determine whether ω(S,D) is zero or positive.

On separately subharmonic functions (Lelong’s problem)

A. Sadullaev (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

The main result of the present paper is : every separately-subharmonic function u ( x , y ) , which is harmonic in y , can be represented locally as a sum two functions, u = u * + U , where U is subharmonic and u * is harmonic in y , subharmonic in x and harmonic in ( x , y ) outside of some nowhere dense set S .

Axiomatic theory of harmonic functions. Balayage

Nicu Boboc, Corneliu Constantinescu, A. Cornea (1965)

Annales de l'institut Fourier

Similarity:

Dans une axiomatique des fonctions harmoniques un peu plus générale que celle de H. Bauer, on démontre les relations suivantes : R s + t A = R s A + R t A , R s A B + R s A B R s A + R s B , A n A , S n s R s n A n R s A , A , B , A n , (resp. s , t , s n ) sont des ensembles (resp. fonctions hyperharmoniques non-négatives) arbitraires. Les mêmes relations sont valables pour R ^ . On démontre aussi que la relation * s d μ A = * R ^ s A d μ a lieu si l’espace de base a une base dénombrable ou si l’axiome D de M. Brelot est satisfait,...

A maximal regular boundary for solutions of elliptic differential equations

Peter Loeb, Bertram Walsh (1968)

Annales de l'institut Fourier

Similarity:

Soit 𝒜 une classe harmonique de Brelot, définie sur W . Il est donné un critère de régularité en termes de barrières, pour les points d’une frontière idéale. Soit un sous-treillis banachique de ℬ𝒜 W . Si 𝒜 est hyperbolique, la frontière idéale compactifiante déterminée par contient une “frontière harmonique” Γ qui satisfait le critère de régularité et 𝒞 R ( Γ ) . Entre autres applications, on a la théorie des frontières de Wiener et Royden et des comparaisons de classes harmoniques.

Duality on vector-valued weighted harmonic Bergman spaces

Salvador Pérez-Esteva (1996)

Studia Mathematica

Similarity:

We study the duals of the spaces A p α ( X ) of harmonic functions in the unit ball of n with values in a Banach space X, belonging to the Bochner L p space with weight ( 1 - | x | ) α , denoted by L p α ( X ) . For 0 < α < p-1 we construct continuous projections onto A p α ( X ) providing a decomposition L p α ( X ) = A p α ( X ) + M p α ( X ) . We discuss the conditions on p, α and X for which A p α ( X ) * = A q α ( X * ) and M p α ( X ) * = M q α ( X * ) , 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.