The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Extensions uniformes des formes linéaires positives”

La théorie des cônes biréticulés

Alain Goullet de Rugy (1971)

Annales de l'institut Fourier

Similarity:

Soient 𝒮 la classe des cônes convexes saillants faiblement complets et 𝒮 loc la sous-classe de 𝒮 formée des cônes localement compacts de 𝒮 . Dans les dix dernières années, Alfsen, Bauer, Effros, Rogalski et Stormer ont donné de nombreuses propriétés équivalentes entre elles et qui caractérisent dans 𝒮 loc les cônes de Radon 𝔐 + ( T ) des mesures de Radon positives sur un espace compact T . On montre ici que ces propriétés, convenablement interprétées, restent équivalentes dans la sous-classe 𝒮 p b c des cônes...

Une nouvelle définition des cônes biréticulés

Alain Goullet de Rugy (1974)

Annales de l'institut Fourier

Similarity:

On montre que si E est un espace vectoriel réticulé, le cône des formes linéaires positives sur E , muni de la topologie de la convergence simple sur E est un cône biréticulé. Ce résultat conduit à une nouvelle définition des cônes biréticulés, équivalents à la définition initiale, mais d’un usage beaucoup plus souple ; ce résultat est la réponse positive à une hypothèse de G. Choquet.

Approximation par des opérateurs compacts ou faiblement compacts à valeurs dans C ( X )

Hicham Fakhoury (1977)

Annales de l'institut Fourier

Similarity:

Soient W = L ' ( μ ) et V = C ( X ) . Il existe une application (non linéaire) normiquement continue T P ( T ) de l’espace des opérateurs bornés de W dans V sur l’espace des opérateurs compacts (resp. faiblement compacts) de W dans V telle que T - P ( T ) coïncide avec la distance de T au sous-espace formé des opérateurs compacts (resp. faiblement compacts). Pour un opérateur donné T de W dans V on étudie les propriétés de l’ensemble K ( T ) (resp. F ( T ) ) des opérateurs compacts (resp. faiblement compacts) tel que pour tout R de K ( T ) (resp....

Espaces de Banach : existence et unicité de certains préduaux

Gilles Godefroy (1978)

Annales de l'institut Fourier

Similarity:

On étudie dans ce travail le problème suivant : un espace de Banach E étant donné, existe-t-il un Banach X tel que X ' soit isométrique à E  ? On donne un critère d’existence d’un tel espace X pour un type particulier d’espaces E . On montre ensuite qu’un tel espace X est unique à isométries près pour quelques classes d’espaces E . On en déduit alors quelques résultats sur les isométries de certains espaces de Banach et la géométrie de certains convexes compacts.