The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On certain barrelled normed spaces”

Some characterizations of ultrabornological spaces

Manuel Valdivia (1974)

Annales de l'institut Fourier

Similarity:

Let U be an infinite-dimensional separable Fréchet space with a topology defined by a family of norms. Let F be an infinite-dimensional Banach space. Then F is the inductive limit of a family of spaces equal to E . The choice of suitable classes of Fréchet spaces allows to give characterizations of ultrabornological spaces using the result above.. Let Ω be a non-empty open set in the euclidean n -dimensional space R n . Then F is the inductive limit of a family of spaces equal to D ( Ω ) . ...

On the closure of spaces of sums of ridge functions and the range of the X -ray transform

Jan Boman (1984)

Annales de l'institut Fourier

Similarity:

For a R n { 0 } and Ω an open bounded subset of R n definie L p ( Ω , a ) as the closed subset of L p ( Ω ) consisting of all functions that are constant almost everywhere on almost all lines parallel to a . For a given set of directions a ν R n { 0 } , ν = 1 , ... , m , we study for which Ω it is true that the vector space ( * ) L p ( Ω , a 1 ) + + L p ( Ω , a m ) is a closed subspace of L p ( Ω ) . This problem arizes naturally in the study of image reconstruction from projections (tomography). An essentially equivalent problem is to decide whether a certain matrix-valued differential operator...

On B r -completeness

Manuel Valdivia (1975)

Annales de l'institut Fourier

Similarity:

In this paper it is proved that if { E n } n = 1 and { F n } n = 1 are two sequences of infinite-dimensional Banach spaces then H = n = 1 E n × n = 1 F n is not B r -complete. If { E n } n = 1 and { F n } n = 1 are also reflexive spaces there is on H a separated locally convex topology , coarser than the initial one, such that H [ ] is a bornological barrelled space which is not an inductive limit of Baire spaces. It is given also another results on B r -completeness and bornological spaces.

An almost-sure estimate for the mean of generalized Q -multiplicative functions of modulus 1

Jean-Loup Mauclaire (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

Let Q = ( Q k ) k 0 , Q 0 = 1 , Q k + 1 = q k Q k , q k 2 , be a Cantor scale, 𝐙 Q the compact projective limit group of the groups 𝐙 / Q k 𝐙 , identified to 0 j k - 1 𝐙 / q j 𝐙 , and let μ be its normalized Haar measure. To an element x = { a 0 , a 1 , a 2 , } , 0 a k q k + 1 - 1 , of 𝐙 Q we associate the sequence of integral valued random variables x k = 0 j k a j Q j . The main result of this article is that, given a complex 𝐐 -multiplicative function g of modulus 1 , we have lim x k x ( 1 x k n x k - 1 g ( n ) - 0 j k 1 q j 0 a q j g ( a Q j ) ) = 0 μ -a.e .

Mapping Properties of c 0

Paul Lewis (1999)

Colloquium Mathematicae

Similarity:

Bessaga and Pełczyński showed that if c 0 embeds in the dual X * of a Banach space X, then 1 embeds as a complemented subspace of X. Pełczyński proved that every infinite-dimensional closed linear subspace of 1 contains a copy of 1 that is complemented in 1 . Later, Kadec and Pełczyński proved that every non-reflexive closed linear subspace of L 1 [ 0 , 1 ] contains a copy of 1 that is complemented in L 1 [ 0 , 1 ] . In this note a traditional sliding hump argument is used to establish a simple mapping property of...

Partial differential operators depending analytically on a parameter

Frank Mantlik (1991)

Annales de l'institut Fourier

Similarity:

Let P ( λ , D ) = | α | m a α ( λ ) D α be a differential operator with constant coefficients a α depending analytically on a parameter λ . Assume that the family { P( λ ,D) } is of constant strength. We investigate the equation P ( λ , D ) 𝔣 λ g λ where 𝔤 λ is a given analytic function of λ with values in some space of distributions and the solution 𝔣 λ is required to depend analytically on λ , too. As a special case we obtain a regular fundamental solution of P( λ ,D) which depends analytically on λ . This result answers a question of L. Hörmander. ...